首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The larval development of the squat lobster Munida subrugosa from subantarctic waters of the Beagle Channel (Tierra del Fuego, Argentina) was studied under controlled laboratory conditions of temperature, salinity, and food supply. Developmental times, survival, and growth of larvae and early juveniles were investigated. Hatching of the entire brood always occurred during one night. Larvae were kept in 100ml individual bowls with filtered seawater at 8 ± 0.5°C and fed with Artemia spp. nauplii three times a week. Larvae passed through 6 zoeal instars and one megalopa. Previously, only five zoeal instars were known from this species. Mean cumulative durations of the zoeal stages I to VI were: 20.5 ± 2.5, 33.9 ± 4.1, 43.3 ± 5.4, 52.6 ± 5, 61.2 ± 3.9, and 83days, respectively. By adding the 28days that a single megalopa took to metamorphose to crab I stage, the complete larval development lasted 111days. Highest mortality occurred prior to the moult from the zoea I to zoea II stage (79.21% ± 18.65%) and during the moult from zoea VI to megalopa (92.86%). Carapace length was 1.64 ± 0.06, 1.52 ± 0.16, 1.57 ± 0.26, 1.64 ± 0.21, 2.11 ± 0.35, and 2.58 ± 0.19mm, for zoeal stages I to VI, respectively. Carapace length of megalopae and crab I instars was similar (2.85 ± 0.28 and the 2.84 ± 0.05, respectively). Unlike other subantarctic decapods, which show a tendency towards abbreviated larval development and/or some degree of endotrophy, M. subrugosa shows an extended planktotrophic larval development synchronized with short seasonal plankton production in austral summers.  相似文献   

2.
The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5–11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.  相似文献   

3.
We used stable isotope analysis to examine food sources for early life-history stages of the vent crab Bythograea thermydron. During two cruises to a hydrothermal vent site along the East Pacific Rise, we collected a variety of endemic organisms, including approximately 300 specimens of B. thermydron. The crab collection consisted mainly of megalopae and early juveniles, but also included adults and a single zoea. As expected, the carbon-isotope composition of newly released zoeae (−12.2%) was similar to the female (−11.1%) and clearly different from megalopae (21.7%). Because we were unsuccessful in culturing the zoea larvae, we were not able to conduct experiments to determine the effect of diet on isotopic composition. The tissue of megalopae was depleted in 13C (−21.7%) when compared to indigenous prey species, but was similar to that expected for carnivorous zooplankton dependent on surface primary production. The nitrogen-isotope composition of megalopae was enriched in 15N (10%) relative to potential prey species, again suggesting a photosynthetic source of primary production. The mean carbon-isotope composition of newly metamorphosed juvenile crabs (−19.9%) resembled megalopae, while tissue from subsequent juvenile stages was enriched in 13C (−10.9%) with values similar to those measured in co-occurring prey species. These results imply that megalopae are dependent on a source of primary production exogenous to the vents, but switch to a vent-based food web soon after metamorphosis to the juvenile stage.  相似文献   

4.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

5.
Improved methods for experimental rearing ofPagurus bernhardus andCarcinus maenas larvae are presented. Isolated maintenance was found essential for reliable statistical evaluation of results obtained from stages older than zoea-1. Only by isolated rearing is it possible to calculate mean values ±95% confidence intervals of stage duration. Mean values (without confidence intervals) can only be given for group-reared larvae if mortality is zero. Compared to group rearing, isolated rearing led to better survival, shorter periods of development and stimulated growth. Due to different swimming behaviorP. bernhardus zoeae needed larger water volumes thanCarcinus maenas larvae.P. bernhardus zoeae were reared with best results when isolated in Petri dishes (ca. 50 ml). They fed on newly hatched brine shrimp nauplii (Artemia spp.).P. bernhardus megalopa did not require any gastropod shell or substratum; it developed best in glass vials without any food.C. maenas larvae could be reared most sucessfully in glass vials (ca 20 ml) under a simulated day-night regime (LD 16:8); constant darkness had a detrimental effect on development, leading to prolonged stage-duration times.C. maenas larvae were fed a mixture of newly hatched brine shrimp naupli and rotifers (Brachionus plicatilis).  相似文献   

6.
Three species of Lagenidiales were isolated from the eggs and zoeae of the marine crabPortunus pelagicus. One of them,Lagenidium callinectes, is reported for the first time in Japan, with fungal infection in the eggs.Haliphthoros milfordensis was discovered from a zoea of the crab.Atkinsiella okinawaensis was also isolated from a zoea of the crab and described as a new species. Growth temperature range and optimum temperature of the fungi were examined. All of the isolates grew at various concentrations of NaCl or KCl, and optimum growth was observed on PYGS agar containing seawater. Pathogenicity to zoeae of the swimming crabPortunus trituberculatus was demonstrated by using a zoospore suspension of each fungus at 25°C.  相似文献   

7.
8.
9.
10.
Larvae of the spider crab Hyas araneus were reared in the laboratory from hatching through to metamorphosis. Neurogenesis was recorded in the ventral nerve cord during development of successive larval stages, zoea 1, zoea 2, megalopa and crab 1. Proliferating cells were detected immunocytochemically after in vivo labelling with 5-bromo-2-deoxyuridine (BrdU) which, as a thymidine analogue, is incorporated into the DNA of dividing cells. Segmental sets of mitotically highly active neuroblasts were found in newly hatched larvae. A dorsal neuroblast, a ventral-median neuroblast, 3–6 anterior-ventral neuroblasts and 1–3 lateral neuroblasts could be distinguished in each thoracic ganglion. Significantly fewer neuroblasts were labelled in the suboesophageal ganglion as compared to the thoracic ganglia. The number of active labelled neuroblasts was high throughout zoea 1 and about 30% of zoea 2 development and then dramatically decreased towards premetamorphosis. In the newly moulted megalopa, only a reduced set of neuroblasts was labelled which ceased dividing within the first few days of megalopa development. There is an indication that, although most ganglion mother cells born by unequal division of neuroblasts may go through their final division at an early stage, certain clusters of ganglion mother cells obviously delay their final mitosis. These results are discussed with regard to neuronal integration which necessarily changes during the course of metamorphosis in relation to the altered behavioural repertoire of the larvae.  相似文献   

11.
Three species of microalgae, the freshwater Euglena gracilis and themarine Dunaliella salina and Tetraselmis suecica, were fed tothe brine shrimp Artemia salina in order to compare their suitabilityin terms of fatty acid enrichment, and their effect on the biometric parametersof the zooplankter. The fatty acid content and composition were analyzed for the post-larval and pre-adult stages of Artemia fed the algae and theresults compared to the initial content of unfed 24-hour post-hatch nauplii.Differences in the total fatty acid content occurred between the three stages,the fatty acid profile being determined by the composition of the diet. A decreasing trend for almost all the individual fatty acids occurred throughdevelopment from post-larva to pre-adult with each of the three algal diets.Biometrical differences between Artemia fed the marine algae and that fed Euglena were not consistent in the post-larval stage, but became considerable in the pre-adult stage. Artemia fed with Euglena achieved twice the weight of animals fed the marine algae and showed thehighest length. The implications for the use of on-grown Artemia as afeed in larviculture of marine and freshwater fish and crustaceans are considered.  相似文献   

12.
In marine benthic invertebrates with complex life cycles, recruitment success, juvenile survival, and growth may be affected by variation in both maternal factors and environmental conditions prevailing during preceding embryonic or larval development. In an estuarine crab, Chasmagnathus granulata, previous investigations have shown that initial larval biomass is positively correlated with the biomass of recently extruded eggs, and it depends also on the salinity experienced during embryogenesis. Biomass at hatching has consequences for the subsequent larval development which, in this species, comprises two alternative developmental pathways with four or five zoeal instars (short or long pathway) and a megalopa. Larvae hatching with a lower than average biomass tend to develop through the long pathway and metamorphose to megalopae with higher biomass. In the present study, we show experimentally that the long pathway produces also significantly larger juveniles (crab size measured as carapace width, biomass as dry mass, carbon and nitrogen contents). Compared with juveniles originating from the short pathway, those from the long pathway showed in successive instars longer moulting cycles and larger carapace width, but lower size increments at ecdysis. In consequence, differences in size or biomass of long pathway vs short pathway crabs tended to disappear in later instars (after stage V). Furthermore, we tested in juveniles the tolerance of starvation at three salinities (5‰, 15‰, 32‰). Tolerance of starvation was significantly higher in juveniles originating from the long pathway, indicating higher energy reserves. While salinity played only a minor role for survival, it exerted significant effects on the time of moulting to the second juvenile instar, regardless of the preceding developmental pathway. The biomass of first juveniles obtained from the short pathway showed a significant positive correlation with the biomass of the freshly hatched zoea I, but not in those from the long pathway. In conclusion, the fitness of juvenile C. granulata is linked with previous developmental processes and environmental conditions during the embryonic and larval phase. Hence, a better understanding and prediction of the recruitment success of marine benthic invertebrates with a complex life cycle may require more comprehensive life‐history investigations.  相似文献   

13.
Changes in growth and biochemical composition during the transition from egg through zoea to decapodid in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935), were documented in terms of dry weight, lipid classes, fatty acid composition, and carbon to nitrogen (C:N) ratios. Larvae of the ghost shrimp were mass-reared in the laboratory (28°C; 20‰ S) from hatching to the decapodid stage. Iatroscan lipid class analysis revealed that major lipid classes in recently produced eggs were phospholipids (80.8±1.3%) and triglycerides (16.0±1.1%), which decreased during the incubation period. Polar lipids (zoea I: 77.4±1.7%; zoea II: 77.5±2.1%; decapodid: 80.0±1.7%) and neutral lipids, of which free fatty acids (zoea I: 10.5±2.7%; zoea II: 13.1±5.2%; decapodid: 7.8±2.1%) were dominant, represented the major lipid classes in the zoeal and decapodid stages. Triglycerides were present in small amounts. The predominant fatty acids of L. louisianensis eggs, zoeae and decapodids were palmitic (16:0), stearic (18:0), eicosapentaenoic (20:5ω3), oleic (18:1ω9), and arachidonic (20:4ω6). Elemental composition of eggs, larvae, and the decapodid stage revealed conspicuous changes in the C:N ratio, with N being relatively stable during larval development but C decreasing during the decapodid stage. These data suggest independence of newly hatched L. louisianensis on external energy resources. This combined with the ability to incorporate saturated fatty acids into polar lipids provides a selective advantage for fast development of new tissue and growth, characteristic of decapod crustacean larvae with lecithotrophic development.  相似文献   

14.
The larval development of three crabs of the Varunidae family, (Hemigrapsus sanguineus, H. penicillatus, and H. longitarsis), widely spread in Russian waters of the Sea of Japan, were studied under laboratory conditions. At a temperature of 20–22°C and a salinity of 32‰ about 30% of larvae a complete developmental cycle, including five zoeal stages and megalopa, took from 22 to 30 days. All larval stages are illustrated and described in detail. Zoea I and zoea II of the studied crabs are not distinguishable. Zoea III–V of these species differ in the number of dorsomedial setae on the abdominal somite I and in the number of setae on the posterodorsal arch. The megalopae of three Hemigrapsus species possess a different number of segments, aesthetascs and setae on the antennular exopod. In spite of the great similarity of larvae of genera Hemigrapsus and Eriocheir, the latter possesses a number of distinctive features in all developmental stages, supporting the separation of these genera.  相似文献   

15.
16.
Patterns of seasonal change in the abundances of the planktonic larvae of four sympatric hermit crabs were examined at five fixed stations over 18 months in Christmas Bay, Texas. Clibanarius vittatus (Bosc) was present in the plankton from April through October, Pagurus longicarpus Say from September through May and P. pollicaris Say from December through February. Pagurus annulipes (Stimpson) zoeae were the most frequently encountered zoeae and were found throughout the year, but were most abundant in late spring and summer. Zoea I of P. annulipes and P. pollicaris were found to be reliably distinguishable on the basis of their carapace lengths. Clibanarius zoea I were very abundant (3149) and 42 megalopa but no zoea II–V were found. Inadequate sampling and the short durations of these missing stages do not seem sufficient to explain their absence.  相似文献   

17.
Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species,Cyrtograpsus angulatus andChasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November–December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans (Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanidPachycheles haigae) were also found occasionally. Caridean shrimp (Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m−3. The highest larval abundance was recorded inC. angulatus, with almost 8000°m−3. Significantly moreC. angulatus andC. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency ofC. granulata in low salinities (≤12‰) and at a particular sampling site may be related to local distribution patterns of the reproducing adult population. Unlike crab larvae, those of shrimp (P. argentinus) are retained inside the lagoon, where they develop from hatching through metamorphosis. They significantly prefer low salinity and occur at the lagoon surface more often at night. These patterns cannot be explained by larval release rhythms like those in brachyuran crabs, but may reflect diel vertical migrations to the bottom. It is concluded that osmotic stress as well as predation pressure exerted by visually directed predators (small species or life-cycle stages of estuarine fishes) may be the principal selection factors for the evolution of hatching and migration rhythms in decapod larvae, and that these are characteristics of export or retention mechanisms, respectively.  相似文献   

18.
Larvae of the spider crabHyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate (F), oxygen consumption (R), nitrogen excretion (U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight (W), carbon (C), nitrogen (N), hydrogen (H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. AverageF was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). MaximumF in the megalopa was observed still earlier, during postmoult. Respiration (R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation inF andR during larval development confirm results obtained in previous studies onH. araneus and other decapod species. Excretion (U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomicO/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than protein, whereas an inverse growth patterns is typical of the later (premoult) stages. These two different growth phases are interpreted as periods dominated by reserve accumulation in the hepatopancreas, and epidermal growth and reconstruction (morphogenesis), respectively. Differences between individual larval instars in average biochemical composition and growth patterns may be related to different strategies: the zoeal instars and the early megalopa are pelagic feeding stages, accumulating energy reserves (principally lipids) necessary for the completion of larval development, whereas the later (premoult) megalopa is a semibenthic settling stage that converts a significant part of this energy to epidermal protein. The megalopa shifts in behaviour and energy partitioning from intense feeding activity and body growth to habitat selection and morphogenesis, preparing itself for metamorphosis, i.e. it shows an increasing degree of lecithotrophy. Data from numerous parallel elemental and biochemical analyses are compiled to show quantitative relationships betweenW, C, N, H, lipid, and protein. These regressions may be used as empirical conversion equations for estimates of single chemical components in larvalHyas araneus, and, possibly, other decapods.  相似文献   

19.
Following hatching, larvae of the fiddler crab Uca minax (La Conte) are exported from the adult habitat in estuaries to coastal and shelf waters where they undergo development prior to re-entering estuaries as postlarvae (megalopae). Studies of the spatial distribution of both newly hatched zoeae (Stage I) and megalopae indicate they undergo rhythmic vertical migrations associated with the tides for dispersal and unidirectional transport (selective tidal-stream transport) both within estuaries and between estuaries and the nearshore coastal ocean. We tested the hypothesis that U. minax zoeae possess a circatidal rhythm in vertical migration that facilitates offshore transport in ebb tidal flows, while postlarvae (megalopae) return to estuaries using a similar flood-phased endogenous rhythm. We also determined if the expression of the rhythm was influenced by the salinity conditions zoeae and megalopae experience as they transition between low-salinity regions of estuaries and high-salinity coastal waters. Stage I zoeae were collected by holding ovigerous female crabs in the lab until hatching. Megalopae were collected from the plankton and identified to species using molecular techniques (PCR-RFLP). Under constant laboratory conditions, both zoeae and megalopae exhibited endogenous circatidal rhythms in swimming that matched the principal harmonic constituent of the local tides (12.39 ± 0.07 h; X¯ ± SE). Upward swimming in Stage I zoeae occurred 2.5-4 h after high tide near the time of expected maximum ebb currents in the field. Rhythmic swimming of megalopae occurred slightly earlier in the tide (2.5 ± 0.09 h after high tide; X¯ ± SE) but was not entirely synchronized with flood currents, as expected. Salinity conditions had no apparent effect on the expression or pattern of the rhythms. Results indicate that this circatidal rhythm forms the behavioral basis of selective tidal-stream transport (STST) in early stage U. minax zoeae, but does not undergo a sufficient phase shift to account for vertical distribution patterns exhibited by megalopae in the field.  相似文献   

20.
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5–32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号