首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

3.
In songbirds the forebrain nuclei HVC (high vocal center) and RA (robust nucleus of the archistriatum) are larger in individuals or species that produce larger song repertoires, but the extent to which the size of these nuclei reflects a need for either producing or perceiving large repertoires is unknown. We, therefore, tested the hypothesis that species differences in the size of song nuclei reflect a commitment of “brain space” to the perceptual processing of conspecific song. The two species of marsh wren (Cistothorus palustris western and eastern) provide a good test case. Western males produce larger song repertoires, and have larger HVC and RA than do eastern males. Female marsh wrens do not sing, and if they use their song nuclei to assess conspecific male song repertoires, then we predicted that measurable cellular and nuclear parameters of HVC and RA would be greater in western than eastern female wrens. For males we confirmed that the volumes of HVC and RA, and cellular parameters of HVC, are greater in western than in eastern birds. These nuclei were also considerably larger in males than in conspecific females. Western and eastern female wrens, however, did not differ in any measured parameters of HVC or RA. Females of these wren species thus do not provide any direct evidence of anatomical specializations of song nuclei for the perceptual processing of conspecific male song. 1994 John Wiley & Sons, Inc.  相似文献   

4.
In many songbird species, females prefer males that sing a larger repertoire of syllables. Males with more elaborate songs have a larger high vocal centre (HVC) nucleus, the highest structure in the song production pathway. HVC size is thus a potential target of sexual selection. Here we provide evidence that the size of the HVC and other song production nuclei are heritable across individual males within a species. In contrast, we find that heritabilities of other nuclei in a song-learning pathway are lower, suggesting that variation in the sizes of these structures is more closely tied to developmental and environmental differences between individuals. We find that evolvability, a statistical measure that predicts response to selection, is higher for the HVC and its target for song production, the robustus archistriatalis (RA), than for all other brain volumes measured. This suggests that selection based on the functions of these two structures would result in rapid major shifts in their anatomy. We also show that the size of each song control nucleus is significantly correlated with the song related nuclei to which it is monosynaptically connected. Finally, we find that the volume of the telencephalon is larger in males than in females. These findings begin to join theoretical analyses of the role of female choice in the evolution of bird song to neurobiological mechanisms by which the evolutionary changes in behaviour are expressed.  相似文献   

5.
Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei.  相似文献   

6.
In zebra finches, only males sing, and the neural regions controlling song exhibit prominent, hormone-induced sex differences in neuron number. In order to understand how sexual differentiation regulates neuron number within one song nucleus, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), we studied the development of sex differences among IMAN neurons that project to the robust nucleus of the archistriatum (RA). The IMAN is implicated in song learning, and previous ontogenetic studies have indicated that males lose over 50% of their IMAN neurons during the juvenile song learning period. Based on developmental changes in both the extent of androgen accumulation within the IMAN and its appearance in Nissl-stained tissue, it had been hypothesized that IMAN neuron loss was even greater in young females, resulting in sex differences in neuron number. However, this hypothesis has not been tested directly because the Nissl-stained boundaries of the IMAN sometimes are ambiguous in young animals, and are not evident at all in adult females. To circumvent these problems, we employed the retrograde tracer fast blue to study the development of IMAN neurons defined on the basis of their projections to the RA. We find that the number of these IMAN-RA projection neurons is much greater in adult males than in females, and that this sex difference develops during the juvenile period of sexual differentiation and song learning because a significant number of these neurons are lost in females but not in males. With respect to sexual differentiation, we conclude that masculinization (which is stimulated by the hormone estradiol) promotes the retention of IMAN-RA projection neurons. In addition, our results indicate that any loss of IMAN neurons that may occur in young males does not include cells projecting to the RA.  相似文献   

7.
A system of brain nuclei controls song learning and behavior in zebra finches (Poephila guttata). The size of song-control nuclei are much larger in males, which sing, than in females, which do not sing. This study examined the distribution of fibers, terminals, and cell bodies that are immunoreactive for tyrosine hydroxylase (TH) (the rate-limiting enzyme in the synthesis of catecholamines) in song-control nuclei of adult males and females and juvenile males. In addition, the broad pattern of TH staining throughout the brain was described. There was a sex difference in TH immunoreactivity within song-control nuclei: males had light to moderate staining in all three cortical nuclei examined, whereas females had little or no label in corresponding areas [lateral magnocellular nucleus of the anterior neostriatum (IMAN), higher vocal center (HVC), and robust nucleus of the archistriatum (RA)]. The song-control nucleus area X (X), located in the striatum of avian basal ganglia, was more darkly stained than the surrounding striatum only in males; X was not defined by more intense immunoreactivity in females and hence could not be visualized. There were no apparent differences in TH staining in males ranging in age from 50 days to adulthood (>90 days). Outside of the song-control system there were no substantive differences as a function of sex or age in the pattern or intensity of TH labeling. Major areas of telencephalic staining included the striatal region of basal ganglia, which was covered with dense, fine-grained label, and the septum, where cell bodies were encircled by extremely well-labeled thick processes. In the diencephalon, the preoptic area and hypothalamus included a complex pattern of darkly stained somata and fiber and terminal labeling. Darkly stained somata surrounded the pretectal nucleus, and labeled processes ramified throughout the superficial layers of the optic tectum. The midbrain and hindbrain contained a dense plexus of extremely dark cell bodies corresponding to mammalian substantia nigra, adjacent tegmental areas, and locus ceruleus. Labeled hindbrain cells were also seen in the pontine region, around nucleus solitarius, and in the ventrolateral medulla. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
In zebra finches, only males sing, and the neural regions controlling song exhibit prominent, hormone-induced sex diffences in neuron number. In order to understand how sexual differentiation regulates neuron number within one song nucleus, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), we studied the development of sex differences among IMAN neurons that project to the robust nucleus of the archistriatum (RA). The IMAN is implicated in song learning, and previous ontogenetic studies have indicated that males lose over 50% of their IMAN neurons during the juvenile song learning period. Based on developmental changes in both the extent of androgen accumulation within the IMAN and its appearance in Nissl-stained tissue, it had been hypothesized that IMAN neuron loss was even greater in young females, resulting in sex differences in neuron number. However, this hypothesis has not been tested directly because the Nissl-stained boundaries of the IMAN sometimes are ambiguous in young animals, and are not evident at all in adult females. To circumvent these problems, we employed the retrograde tracer fast blue to study the development of IMAN neurons defined on the basis of their projections to the RA. We find that the number of these IMAN-RA projection neurons is much greater in adult males than in females, and that this sex difference develops during the juvenile period of sexual differentiation and song learning because a significant number of these neurons are lost in females but not in males. With respect to sexual differentiation, we conclude that masculinization (which is stimulated by the hormone estradiol) promotes the retention of IMAN-RA projection neurons. In addition, our results indicate that any loss of IMAN neurons that may occur in young males does not include cells projecting to the RA. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways.  相似文献   

10.
Using in situ hybridization to detect the expression of the retinoic acid synthesizing enzyme (retinaldehyde dehydrogenase: zRalDH) mRNA, we mapped the distribution of its expression in adult zebra finch brain. In the neural song circuit, strong expression was found in high vocal center (HVC), para-HVC, and at a very low level in the robust nucleus of the arcopallium (RA). The expression in HVC and RA was found in both males and females. Outside of the song system, major areas of expression were in medial nidopallium (N), hyperpallium apicale (HA), mesopallium ventrale (MV), taenial amygdala (TnA), cerebellar Purkinje cells, and nucleus isthmo-opticus (IO). In nestlings, we found zRalDH mRNA expression in HVC and RA as early as posthatch day 4 or 5 (P4-5), although the expression varied among individuals. Thus, retinoic acid synthesis in HVC and RA could participate in song system formation and development. However, we found no sex difference in volume or intensity of zRalDH and androgen receptor (AR) expression in HVC and RA at P11 prior to the development of significant size dimorphisms in these nuclei. The size of HVC in females at P11 defined by zRalDH expression was greater than that in adult females, suggesting that HVC might experience net cell loss between P11 and adulthood.  相似文献   

11.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nisslstained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

12.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nissl-stained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

13.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The catecholamines norepinephrine (NE) and dopamine (DA) have been implicated in the sexual differentiation of brain and behavior and in species-specific learning in several species. To determine if these neurotransmitters might be involved in sexual differentiation of the vocal control system and song learning in male zebra finches, NE and DA levels and turnover rates were quantified in 10 behaviorally relevant brain nuclei [6 vocal control (VCN), 2 auditory (AN), and 2 hypothalamic (HN)] at four critical points during sexual differentiation of the VCN and the period of song learning, 25, 35, 55, and 90 days of age. Some birds were pretreated with α-methyl-para-tyrosine (αMPT) to allow estimation of NE and DA turnover rates. NE and DA levels in microdissected nuclei were quantified using high-performance liquid chromatography with electrochemical detection. αMPT treatment suppressed catecholamine synthesis just as effectively in juveniles as it does in adults and proved an effective method for estimating NE and DA turnover rates. Patterns of NE and DA function in most VCN and AN over development were quite different from those in HN in which NE and DA function changed gradually and showed no striking peaks. NE turnover rates changed significantly over development in all six VCN [nucleus interfacialis (Nlf), high vocal center (HVC), nucleus robustus of the archistriatum (RA), dorsomedial portion of the intercollicular nucleus (DM), Area X of the parolfactory lobe, and lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN)]; one AN [nucleus mesencephalicus lateralis pars dorsalis (MLd)], and one HN [preopticus anterior (POA)]. NE levels changed significantly in two VCN (Nlf and Area X). In Nlf, RA, Area X, IMAN, and MLd, NE levels and/or turnover rates showed a striking peak at day 25, which was not seen in HN. Both DA levels and turnover rates changed profoundly over development in 5 of 6 VCN (Nlf, RA, DM, Area X, and IMAN) and both AN (MLd and Field L). These nuclei showed striking peaks in DA levels and turnover rates, primarily on day 35 and/or 55, which then declined profoundly by day 90. This contrasted with the minimal change in DA turnover rates seen in one HN (POA) and the sixth VCN, HVC. In several VCN and AN, NE and DA levels and turnover rates during development reached levels never seen in adult males. Previous research has shown that catecholamine function is heightened in VCN during development compared to surrounding tissues. Our data demonstrate that NE and DA function during development shows pronounced peaks in most VCN not seen in HN. This is interesting because both VCN and HN are hormone sensitive, and both show hormone-modulated NE and DA function in adult males. The timing of these peaks suggests that increased catecholaminergic function may be involved in sexual differentiation of the VCN and song learning in finches. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 329–346, 1998  相似文献   

15.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
左明雪  陈刚  彭卫民  曾少举 《生命科学》2000,12(2):60-62,56
鸣禽发声学习的控制系统主要由一条直接神经通路和一条辅助神经通路组成,由前脑控制发声学习的最高中枢HVC、旁嗅叶的X区和巨细胞核外侧部(lMAN)组成的辅助通路,对鸟类发声学习行为的发育和调制具有重要作用。发声控制系统中神经元类型、数量及再生与更替、神经组构及其重组、神经介质和受体的分布等差异,决定了鸣禽在发声学习行为表现的差异以及性双态性。本文对近年鸟类控制发声学习行煌神经生物学机制的进展作了较为  相似文献   

17.
The song‐control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song‐control system of brood‐parasitic brown‐headed cowbirds (Molothrus ater) and closely‐related non‐parasitic red‐winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown‐headed cowbirds have a larger sex difference in song than red‐winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red‐winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post‐breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song‐control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226–1240, 2016  相似文献   

18.
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female‐directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR‐1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR‐1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR‐1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR‐1 expression in these areas. However, EGR‐1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context‐dependent changes could arise de novo in HVC. The pattern of context‐dependent differences in EGR‐1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 47–63, 2016  相似文献   

19.
To assess which hormones are capable of masculinizing the neural song system of zebra finch hatchlings, we implanted female hatchlings with estrogen (estradiol [E2], 75 μg, n = 9), testosterone (T, 75–88 μg, n = 13), androstenedione (AE, 75 μg, n = 7), progesterone (P, 117 μg, n = 10), or nothing (Blanks, n = 10) and compared these to unimplanted males (n = 7). Implants, consisting of a hormone and Silastic mixture encased in polyethylene tubing, were placed under the skin of the breast on the day of hatching. Birds were killed when they were subadult (58 to 68 days old). We measured volumes of area X, the higher vocal center (HVC), and the robust nucleus of the archistriatum (RA); measured soma sizes in the lateral magnocellular nucleus of the neostriatum (IMAN), HVC, and RA: and counted RA neurons. E2 masculinized all measures in the song system and nearly sex-reversed the size of RA neurons. T masculinized volumes of nuclei and soma sizes but not the number or spacing of RA neurons. E2 was always at least as effective as T in masculinizing measures of the song system and was usually more effective. AE and P did not significantly masculinize any measure. These data suggest that E2 is more potent than aromatizable androgens or P in masculinizing the female song system in development and that the action of E2 alone may be sufficient to masculinize the volume of song control nuclei and the size and number of neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号