首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Spence LA  Dickie IA  Coomes DA 《Mycorrhiza》2011,21(4):309-314
Mycorrhizal fungi are important symbionts for the majority of plant species, but their role in determining the susceptibility of habitat to plant invasion is poorly understood. Hieracium lepidulum is an arbuscular mycorrhizal herb, currently invading the understorey of ectomycorrhizal Nothofagus solandri var. cliffortioides (mountain beech) forest in New Zealand. Mountain beech is solely ectomycorrhizal, and other plant species within the understorey occur sporadically. Hieracium has been shown to establish preferentially in microsites with higher plant species richness at a scale of less than 1 m2 within mountain beech forest, and we tested the hypothesis that more diverse microsites (<1 m2) are associated with higher levels of arbuscular mycorrhizal fungal (AMF) inoculum. We found low levels of AMF inoculum across all microsites, and over a third of samples contained no inoculum at all. Higher vascular-plant species richness (but not biomass) was associated with higher AMF spore densities in field soil, and greater AMF colonization of H. lepidulum seedlings in a bioassay. Absence of AMF inoculum from much of the soil and the positive association of inoculum potential with species richness provide a potential mechanism for the establishment of a positive diversity–invasibility relationship in the mountain beech forest.  相似文献   

2.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

3.
A survey of arbuscular mycorrhizal fungi (AMF), arbuscular mycorrhizae (AM), and hyphal networks of AMF was carried out in sand dune sites of different successional stages in the Province Lands Area of Cape Cod National Seashore, Massachusetts. The study focused on large-scale plantings (each of 12–20 ha) of American beachgrass (Ammophila breviligulata) aged 0–7 yr and five adjacent natural dune areas. Sample sites ranged in vegetative cover from barren to forested. Spores of 17 species of AMF were recovered from the dunes. Over the successional sequence, there were increases in the richness and spore populations of the AMF community, the extent of colonization of A. breviligulata roots, and the mycorrhizal inoculum potential of the soil. Unvegetated sites lacked propagules of AMF, but roots of planted culms of A. breviligulata (which carried propagules of AMF) became mycorrhizal in <1 yr after planting. Spores were recovered from previously AMF-free sites that had been planted with beachgrass for 47 wk, and five species of AMF sporulated in sites <6 yr old. Significant hyphal networks were not present in any of the planted areas (<6 yr old at the time of sampling), but did occur in natural areas. The rate of invasion of areas planted to A. breviligulata by later successional plant species may in part depend upon the establishment of a vigorous network of hyphae of AMF in a site.  相似文献   

4.
Soil microbial communities have a profound influence on soil chemical processes and subsequently influence tree nutrition and growth. This study examined how the addition of a commercial inoculum or forest‐collected soils influenced nitrogen (N) and phosphorus (P) dynamics, soil microbial community structure, and growth in Liriodendron tulipifera and Prunus serotina tree saplings. Inoculation method was an important determinant of arbuscular mycorrhizal fungi (AMF) community structure in both species and altered soil N dynamics in Prunus and soil P dynamics in Liriodendron. Prunus saplings receiving whole forest soil transfers had a higher rhizosphere soil carbon/nitrogen ratio and ammonia content at the end of the first growing season when compared to unmanipulated control saplings. Inoculation with whole forest soil transfers resulted in increased inorganic phosphorus in Liriodendron rhizosphere soils. The number of AMF terminal restriction fragments was significantly greater in rhizosphere soils of Liriodendron saplings inoculated with whole forest soil transfers and Prunus saplings receiving either inoculum source than control saplings. Forest soil inoculation also increased AMF colonization and suppressed stem elongation in Liriodendron after 16 months; conversely, Prunus AMF colonization was unchanged and stem elongation was significantly greater when saplings were inoculated with whole forest soil transfers. Longer term monitoring of tree response to inoculation will be essential to assess whether early costs of AMF colonization may provide long‐term benefits. This study provides insight into how practitioners can use microbial inoculation to alter AMF community structure and functioning, subsequently influencing tree growth and nutrient cycling during the restoration of degraded lands.  相似文献   

5.
This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert.  相似文献   

6.
贾彤  姚玉珊  郭婷艳 《生态学报》2020,40(13):4651-4658
以北方铜业铜矿峪矿十八河尾矿坝主要恢复植被白羊草为研究对象,分析重金属污染环境下,白羊草不同生长阶段根际土壤中丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)群落结构与多样性的变化特征,研究各生长阶段白羊草AMF群落结构与环境因子的相互关系。结果发现,白羊草不同生长阶段根际土壤的理化性质和酶活性均存在显著差异。白羊草各生长阶段根际土壤中具有相同的优势科球囊霉科,但AMF群落组成在各个生长阶段的结构存在明显不同。白羊草各生长阶段主要AMF物种对生态因子的响应表现为:幼苗期根际土壤中球囊霉科主要受土壤养分和碳氮比的影响,分蘖期根际土壤中多样孢囊霉科的主要影响因子为土壤pH,成熟期根际土壤中,双型囊霉科双型囊霉科与土壤过氧化氢酶显著相关,类球囊霉科与土壤脲酶显著正相关。总体看来,白羊草各生长阶段根际土壤AMF群落特征受到的生态因子影响具有明显差异。这有助于进一步认识污染环境下AMF的群落特征及其关键影响因子,为铜尾矿生态恢复过程中发掘和利用菌种资源提供科学依据,从而提高矿区生态修复效率。  相似文献   

7.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gypsophila struthium growing in gypsum soils under semiarid conditions. In order to investigate the effect of plant community degradation on the AMF biodiversity at the single species level, on the basis of the plant community complexity level, we selected four areas affected by degradation and shrub species spatial heterogeneity. The AM fungal community colonizing G. struthium was investigated from the morphological and molecular points of view. All plants were well colonized and showed a high level of infective AM propagules. Roots were analyzed by polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of the ribosomal DNA small subunit region. Four AM fungal types were identified and clustered into the AM fungal family: Glomeraceae, Glomus being the only taxon present. One fungal type was present in all the selected areas. Two fungal types are distinct from any previously published sequences and could be specific to gypsum soils. The chemical–physical properties of the soil were not correlated with the AMF diversity in roots. Our data show vegetation cover complexity-dependent differences in the AM fungal community composition.  相似文献   

8.
We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities inoculated, indicating that all plants established functionally compatible AMF in each community, with no preferences. The results suggest that early seedling growth and mycorrhizal development in secondary forests and pastures is not likely limited by diversity, quantity, or quality of mycorrhizal propagules but by the high temperature and water stress conditions prevailing at those sites.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) may play an important role in ecological succession, but few studies have documented the effectiveness of mycorrhizal inoculation at restoration/reclamation sites. At a roadside prairie restoration in Shakopee, Minnesota, we compared AMF root colonization and resulting vegetative cover among four inoculation treatments. After 15 mo of growth, we found that AMF colonization was high in all treatments but was significantly higher in treatments that received AMF inoculum propagated from a local prairie site or commercially available inoculum than the uninoculated control. For the prairie inoculum, this increase in colonization occurred whether the inoculum was applied with seeds in furrows or broadcast with seeds on the soil surface. However, increased colonization did not discernibly affect the restored vegetation; neither total vegetative cover nor the proportion "desired" prairie vegetation differed among inoculation treatments. By the end of the third growing season (27 mo after planting) there were no longer differences in AMF colonization among the inoculation treatments nor were there differences in vegetative cover. It is likely that natural recolonization of the plots by remnant AMF populations at the site limited the duration of the inoculation effect. This natural recolonization, in combination with relatively high soil phosphorus levels, likely rendered inoculation unnecessary. In contrast to previous published studies of AMF inoculation in landscape restorations, this study shows that AMF inoculation may not be warranted under some circumstances.  相似文献   

10.
Land‐use changes and forest fragmentation have strong impact on biodiversity. However, little is known about the influence of new landscape configurations on arbuscular mycorrhizal fungal (AMF) community composition. We used 454 pyrosequencing to assess AMF diversity in plant roots from a fragmented forest. We detected 59 virtual taxa (VT; phylogenetically defined operational taxonomic units) of AMF – including 10 new VT – in the roots of Euphorbia acerensis. AMF communities were mainly composed of members of family Glomeraceae and were similar throughout the fragmented landscape, despite variation in forest fragment size (i.e. small, medium and large) and isolation (i.e. varying pairwise distances). AMF communities in forest fragments were phylogenetically clustered compared with the global, but not regional and local AMF taxon pools. This indicates that non‐random community assembly processes possibly related to dispersal limitation at a large scale, rather than habitat filtering or biotic interactions, may be important in structuring the AMF communities. In this system, forest fragmentation did not appear to influence AMF community composition in the roots of the ruderal plant. Whether this is true for AMF communities in soil and the roots of other ecological groups of host plants or in other habitats deserves further study.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) play an important role in maintaining the function and sustainability of grassland ecosystem, but they are also susceptible to environmental changes. In recent decades, alpine meadows on the Tibetan Plateau have experienced severe degradation due to the impact of human activities and climate change. But it remains unclear how degradation affects the AMF community, a group of functionally important root associated microorganisms, which potentially limit the development and application of microbial technologies in the restoration of degraded grasslands. In this study, we investigated AMF communities richness and composition in non-degraded (ND), moderately degraded (MD) and severely degraded (SD) alpine meadows on the Tibetan Plateau, and then explored their main biotic and abiotic determinants. Alpine meadow degradation significantly reduced plant community biomass, richness, soil organic carbon, total nitrogen, total phosphorus, available nitrogen and available phosphorus, but increased soil pH. AMF community composition and the iesdominant family and genera differed significantly among different degradation stages. Grassland degradation shifted the AMF community composition in favor of Claroideoglomus over Rhizophagus, and resulted in a marked loss of Glomeraceae and the dominance of Diversisporaceae. Alpine meadow degradation significantly increased AMF hyphal density and richness, likely working as a plant strategy to relieve nutrient deficiencies or loss as a result of degradation. The structural equation model showed that AMF community richness and composition were significantly influenced by plant community, followed by soil available nutrients. Soil available nutrients was the key contributor to the increased AMF hyphal density and richness during grassland degradation. Our findings identify the effects of alpine meadow degradation on AMF richness and highlight the importance of the plant community in shaping the AMF community during alpine meadow degradation. These results suggest that plant community restoration should be the primary goal for the ecological restoration of degraded alpine meadows, and these soil functional microorganisms should be simultaneously integrated into ecological restoration strategies and management.  相似文献   

12.
Land use type is key factor in restoring the degraded soils due to its impact on soil chemical properties and microbial community. In this study, the influences of land use type on arbuscular mycorrhizal fungal (AMF) community and soil chemical properties were assessed in a long-run experimental station in subtropical hilly area of southern China. Soil samples were collected from forest land, orchard and vegetable field. Soil chemical properties were analyzed, and PCR-DGGE was performed to explore the AMF community structure. Cloning and sequencing of DGGE bands were conducted to monitor AMF community composition. Results indicate that the contents of total P, available P and available K were the highest while the contents of soil organic matter, total N, total K and available N were the lowest in vegetable field soils, with forest land soils vice versa. According to DGGE profiling, AMF community in forest soils was more closely related to that in orchard soils than that in vegetable field soils. Sequencing indicated that 45 out of 53 excised bands were AMF and 64.4% of AMF belonged to Glomeraceae, including some “generalists” present in all soils and some “specialists” present only in soils of particular land use. Category principle component analysis demonstrated that total N, soil organic matter and available P were the most important factors affecting AMF community, and some AMF phylotypes were closely associated with particular soil chemical properties. Our data suggest that AMF communities are different with different land use types.  相似文献   

13.
Despite the importance of arbuscular mycorrhizal fungi (AMF) within deciduous forest ecosystems, we know little about how natural AMF communities are structured in the root zone of the endangered elm species Ulmus chenmoui. In this study, three U. chenmoui sampling sites, differing with respect to plant health, age, and growth status, were selected in Anhui Province, China. AMF biodiversity in the root zones of individual U. chenmoui trees was investigated using high‐throughput sequencing. In total, 61 AMF operational taxonomic units were detected. Five genera, namely Glomus (62.82%), Paraglomus (17.82%), Rhizophagus (4.29%), Septoglomus (4.06%) and Funneliformis (2.35%), and 29 species of AMF were identified. Correlation analysis indicated that available soil phosphorus and potassium concentrations were the main edaphic factors influencing AMF community structure. There was a difference in AMF species richness among the three U. chenmoui stands. Our study showed that soil nutrient concentrations and plant health, age, and growth status can exert a selective effect on the composition of the AMF population in the soil in the root zones of U. chenmoui trees.  相似文献   

14.
Soil biota could have a significant impact on plant productivity and diversity through benefiting plants and mediating plant–plant interaction. However, it is poorly understood how soil biotic factors interaction with abiotic environments affect plant community diversity and composition. Here, we investigate the community‐level consequences of arbuscular mycorrhizal fungi (AMF) interactions with multiple nutrients and their ecological stoichiometry. We conducted a greenhouse experiment manipulating nitrogen (N) and phosphorus (P) to create soil nutrient availability and N:P gradients for microcosm communities with and without AMF. We found that AMF suppressed plant diversity at low P levels, whereas it did not alter the diversity at high P levels because of trade‐offs in the abundance of the dominant and subordinate species. AMF reduced plant diversity at the intermediate N:P ratios, while AMF did not affect the diversity at low and high N:P ratios. P addition decreased the mycorrhizal contribution to community productivity, whereas N addition reduced the negative effects of AMF on productivity at high P levels. AMF decreased community productivity at low N:P ratios but increased it at high N:P ratios. AMF increased the stoichiometric homoeostasis of plant communities, which was positively correlated with the stability of productivity under variations in soil N:P ratios. Our study demonstrates that both resource availability and stoichiometry influence the effect of AMF on plant community productivity and diversity and suggests that AMF may increase the stability of plant communities under variations in the soil nutrients by increasing the stoichiometric homoeostasis of the plant community.  相似文献   

15.
The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a “most probable number” (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.  相似文献   

16.
Extreme growing conditions inhibit restoration in sandpit mines. Co‐amendment of soil conditioners such as biochar, compost, and arbuscular mycorrhizal fungi (AMF) may alleviate these stresses and lead to a more successful restoration. We conducted a multiyear restoration experiment in a sandpit in Southern Ontario, Canada, following industrial‐scale grassland restoration protocols. The sandpit substrate was sand with low carbon (C) and nutrients. We tested the effect of biochar, compost, and AMF inoculum in two experiments (plant plugs vs. seed application). In the plant plug trial, we investigated the treatment effects on the growth of eight grassland plant species and colonization of plant roots by AMF over two growing seasons. We found that co‐amending soils with compost plus biochar (20 T/ha + 10 T/ha) was more beneficial than other amendment combinations. Amendments including AMF were not more beneficial to plant growth than those without AMF. In the seed application trial, direct inoculation of AMF in the field combined with high compost addition (20 T/ha or 40 T/ha) resulted in the highest plant cover compared to other treatment combinations. Our results indicate that co‐amending sandpit substrates with biochar, compost, and AMF are practical restoration tools that enhance grassland restoration.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

18.
J Davison  M Opik  M Zobel  M Vasar  M Metsis  M Moora 《PloS one》2012,7(8):e41938
Despite the important ecosystem role played by arbuscular mycorrhizal fungi (AMF), little is known about spatial and temporal variation in soil AMF communities. We used pyrosequencing to characterise AMF communities in soil samples (n = 44) from a natural forest ecosystem. Fungal taxa were identified by BLAST matching of reads against the MaarjAM database of AMF SSU rRNA gene diversity. Sub-sampling within our dataset and experimental shortening of a set of long reads indicated that our approaches to taxonomic identification and diversity analysis were robust to variations in pyrosequencing read length and numbers of reads per sample. Different forest plots (each 10×10 m and separated from one another by 30 m) contained significantly different soil AMF communities, and the pairwise similarity of communities decreased with distance up to 50 m. However, there were no significant changes in community composition between different time points in the growing season (May-September). Spatial structure in soil AMF communities may be related to the heterogeneous vegetation of the natural forest study system, while the temporal stability of communities suggests that AMF in soil represent a fairly constant local species pool from which mycorrhizae form and disband during the season.  相似文献   

19.
为了进一步了解丛枝菌根(AM)真菌群落对不同海拔环境的响应,基于孢子形态学鉴定,研究了西藏高原不同海拔区域主要草本植物AM真菌的群落特征、菌根侵染及其变化.结果表明: 藏东南低海拔区(2200~3400 m)、藏中中海拔区(3400~3900 m)和藏北高海拔区(4300~5300 m)的AM真菌分别为11属31种、11属20种和6属14种.随着海拔上升,孢子密度(r=0.978,P<0.01)、物种丰度(r=0.462,P>0.05)均趋提高,优势种、特有种比例大幅增加,Shannon指数(r=-0.945,P<0.01)极显著下降.不同海拔区之间AM真菌群落Sorensen相似性系数(0.526~0.592)较为接近,仅在总体上随海拔差异扩大略趋下降;藏东南低海拔区、藏北高海拔区菌根侵染率无显著差异,但均显著低于藏中中海拔区.各海拔区内,不同海拔梯度对AM真菌群落、根系侵染亦具显著影响,但影响程度、影响趋势因整体海拔环境不同而异.说明西藏高原AM真菌群落趋于生境选择,受控于海拔所主导的水热环境及土壤环境.  相似文献   

20.
Yuebo Jing  Jihua Mao  Rongbo Li 《Phyton》2022,91(12):2719-2732
Olive (Olea europaea L.) is one of the most important and widely cultivated fruit trees, with high economic, ecological, cultural and scientific value. China began introducing and cultivating olive in the 1960s, and Yunnan Province is one of the main growing areas. Improving the cultivation and productivity of this tree crop species is an important challenge. Olive is a typical mycotrophic species and the potential of arbuscular mycorrhizal fungi (AMF) for this plant is well recognized; nevertheless, studies of olive AMF in China are still very limited. Roots and rhizosphere soils of olive were sampled from five representative growing sites in the Yunnan Province of China to investigate the AMF colonization status in the root systems, the AMF community in the olive orchards and the edaphic factors influencing the arbuscular mycorrhizal (AM) parameters. Root samples of olive trees from different growing sites generally showed AMF colonization, suggesting that autochthonous AMF manifest a high efficiency in colonizing the roots of olive plants. The spore density on the five sites ranged from 81.6 to 350 spores per 20 g soil. Twenty-three AMF species from 9 genera were identified in total, and Glomeraceae was the dominant family. The findings of our study suggested a high AMF diversity harbored by olive growing in different areas of the Yunnan Province, Southwestern China. Furthermore, the hyphal colonization in roots positively correlated with soil pH and EC. The arbuscule colonization in olive roots negatively correlated with soil pH, EC, OM, TN, TP and AN. The spore density positively correlated with OM, TN, AN, AP and sand content. Finally, the Shannon index of AMF in the rhizosphere soil positively correlated with the clay content, but negatively correlated with soil pH, TN and silt content. The high diversity of autochthonous AMF in Yunnan is promising for screening AMF isolates for utilization in the efficient cultivation of this crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号