首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this field study was to examine how the development of arbuscular mycorrhizal fungi (AMF) on coal mine spoil banks is affected by the presence of plants with different mycorrhizal status. A 3-year trial was conducted on the freshly created spoil bank Vršany, North-Bohemian coal basin, the Czech Republic. Three plant species – non-mycotrophic annual Atriplex sagittata, highly mycotrophic annual Tripleurospermum inodorum (both dominants of early stages of succession) and facultatively mycotrophic Arrhenatherum elatius (a perennial grass species of the later stage of succession) – were planted on 1 m2 plots over 3 years in different sequences that simulated the progress of succession on spoil banks. The development of AMF populations was monitored by evaluation of mycorrhizal colonization of plant roots and by measurement of the mycorrhizal inoculation potential (MIP) of soil. These two parameters were compared between plots inoculated with the mixture of three AMF isolates – Glomus mosseae BEG95, G. claroideum BEG96 and G. intraradices BEG140 – (“inoculated plots”) and plots exposed only to natural dispersal of AMF propagules (“uninoculated plots”). Highly colonized roots of plants together with a high MIP of soil in uninoculated plots were already found at the end of the first season, indicating rapid natural dispersal of AMF propagules. Root colonization of facultatively mycotrophic and non-mycotrophic plants in later years was affected by the mycorrhizal status of the previous plant species. The MIP of soil continuously increased throughout the experiment; in uninoculated plots, the MIP was temporarily decreased if plant species of higher mycotrophy were replaced by species of lower mycotrophy. The results lead to the conclusion that AMF colonize freshly formed sites very quickly and reproduce or accumulate in the soil, which leads to increasing MIP values. However, this infective potential can be decreased if non-mycotrophic plants predominate on the site.  相似文献   

2.
Yuebo Jing  Jihua Mao  Rongbo Li 《Phyton》2022,91(12):2719-2732
Olive (Olea europaea L.) is one of the most important and widely cultivated fruit trees, with high economic, ecological, cultural and scientific value. China began introducing and cultivating olive in the 1960s, and Yunnan Province is one of the main growing areas. Improving the cultivation and productivity of this tree crop species is an important challenge. Olive is a typical mycotrophic species and the potential of arbuscular mycorrhizal fungi (AMF) for this plant is well recognized; nevertheless, studies of olive AMF in China are still very limited. Roots and rhizosphere soils of olive were sampled from five representative growing sites in the Yunnan Province of China to investigate the AMF colonization status in the root systems, the AMF community in the olive orchards and the edaphic factors influencing the arbuscular mycorrhizal (AM) parameters. Root samples of olive trees from different growing sites generally showed AMF colonization, suggesting that autochthonous AMF manifest a high efficiency in colonizing the roots of olive plants. The spore density on the five sites ranged from 81.6 to 350 spores per 20 g soil. Twenty-three AMF species from 9 genera were identified in total, and Glomeraceae was the dominant family. The findings of our study suggested a high AMF diversity harbored by olive growing in different areas of the Yunnan Province, Southwestern China. Furthermore, the hyphal colonization in roots positively correlated with soil pH and EC. The arbuscule colonization in olive roots negatively correlated with soil pH, EC, OM, TN, TP and AN. The spore density positively correlated with OM, TN, AN, AP and sand content. Finally, the Shannon index of AMF in the rhizosphere soil positively correlated with the clay content, but negatively correlated with soil pH, TN and silt content. The high diversity of autochthonous AMF in Yunnan is promising for screening AMF isolates for utilization in the efficient cultivation of this crop.  相似文献   

3.
In this study, we explore two mycorrhizal groups during development of riparian soils along a freely-flowing river. We provide the first documentation of a shift in abundance between arbuscular mycorrhizae and ectomycorrhizae during floodplain succession. We used a chronosequence spanning 0–70 yr along a river in northwestern Montana, USA, to test the hypothesis that abundance of arbuscular mycorrhizal fungi (AMF) is greatest in early stages of soil development, and abundance of ectomycorrhizal fungi (ECMF) is greatest later in floodplain succession. We also measured the AMF-mediated process of formation of soil aggregates during site development. AMF colonization of the dominant tree (black cottonwood, Populus trichocarpa ) remained low (<5%), while AMF colonization of understory species was high (45–90%), across the chronosequence. Mycorrhizal inoculum potential (MIP) and hyphal length of AMF in soil peaked within the first 13 yr of succession and then declined. No single variable significantly correlated with AMF abundance, but AMF tended to decline as litter and soil organic matter increased. Density of ectomycorrhizal root tips in soil increased linearly throughout the chronosequence, and ectomycorrhizal colonization of cottonwood roots increased rapidly in early stages of succession. These patterns suggest that ECMF are not limited by dispersal, but rather influenced by abundance of host plants. Formation of water stable aggregates increased rapidly during the first third of the chronosequence, which was the period of greatest AMF abundance in the soil. The peak in AMF infectivity and hyphal length during early succession suggests that regular flooding and establishment of new sites promotes AMF abundance in this ecosystem. Regulation of rivers that eliminates creation of new sites may reduce contributions of AMF to riparian areas.  相似文献   

4.
The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a “most probable number” (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.  相似文献   

5.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

6.
Wu B  Hogetsu T  Isobe K  Ishii R 《Mycorrhiza》2007,17(6):495-506
Community structure of arbuscular mycorrhizal fungi (AMF), evaluated as spore samples and mycorrhizal roots of four herbaceous plant species, was investigated at different altitudes in a primary successional volcanic desert on Mount Fuji using molecular methods (fragment and sequence analysis of the large ribosomal subunit RNA gene). In total, 17 different AMF clades were identified, and most were members of the Glomaceae, Acaulosporaceae, and Gigasporaceae. The AMF community structures detected by spore sampling were inconsistent with those from plant roots. Of all AMF clades, six (35.3%) were detected only on the basis of spores, six (35.3%) only in roots, and five corresponded to both spores and roots (29.4%). Although an Acaulospora species was the most dominant among spores (67.1%), it accounted for only 6.8% in root samples. A species analysis of AMF communities at different altitudes demonstrated that AMF species diversity increased as altitude decreased and that the species enrichment at lower altitudes resulted from the addition of new species rather than species replacement. The inconsistencies in the species composition of spore communities with those in roots and the change in species diversity with altitude are discussed.  相似文献   

7.
Samphire Hoe is a newly-created land platform comprising the sub-seabed material excavated during the construction of the Channel tunnel. It represents a unique resource where the arrival and establishment of arbuscular mycorrhizal fungi (AMF) within a sown plant community on a low nutrient substrate can be monitored. Arbuscular mycorrhizal fungi invasion was monitored in a number of ways: by assessing the degree of root colonisation within the roots of plants on the site, by using a successive trap culture technique to determine AMF species richness, and by using sterile substrate bins to determine the extent of wind-borne and rain-dispersed immigration of AMF propagules into the site. Levels of colonisation of indigenous plants by AMF were high in May–June (the pre-flowering phase of growth for many plants) reflecting the important role of the mycorrhizal symbiosis in dry, low nutrient soils. Twelve species of AMF were identified, representing a relatively high diversity for a recently deposited subsoil. An on-site experiment indicated that inoculum of AMF could enter the site within 8 months and that wind dispersal and/or rain were possible vectors. A field experiment compared the outplanting performance of commercially-produced Elymus pycnanthus seedlings (in a commercial compost with added nutrients) with seedlings produced in a low nutrient substrate and inoculated with AMF isolated from the site (a mixture of 5 species of Glomus) or left uninoculated. After 14 months in the field seedlings, inoculated with the indigenous AMF, had the same tiller production as commercially-produced plants, despite slower initial growth. In contrast, non-mycorrhizal controls grew very poorly with a greater frequency of plant mortality compared with the other treatments. Elymus seedlings inoculated with the indigenous AMF ultimately produced approximately seven times the mean number of seed spikes per surviving plant as commercially-produced seedlings and five times greater weight of seed spike. A phyto-microbial approach to the revegetation of nutrient-poor soils is proposed to stimulate plant successional processes as a economically-viable sustainable input for landscaping anthropogenic sites.  相似文献   

8.
Seed banks represent a reservoir of propagules important for understanding plant population dynamics. Seed viability in soil depends on soil abiotic conditions, seed species, and soil biota. Compared to the vast amount of data on plant growth effects, next to nothing is known about how arbuscular mycorrhizal fungi (AMF) could influence viability of seeds in the soil seed bank. To test whether AMF could influence seed bank viability, we conducted three two‐factorial experiments using seeds of three herbaceous plant species (Taraxacum officinale, Dactylis glomerata, and Centaurea nigra) under mesocosm (experiments 1 and 2) and field conditions (experiment 3) and modifying the factor AMF presence (yes and no). To allow only hyphae to grow in and to prevent root penetration, paired root exclusion compartments (RECs) were used in experiments 2 and 3, which were either rotated (interrupted mycelium connection) or kept static (allows mycorrhizal connection). After harvesting, seed viability, soil water content, soil phosphorus availability, soil pH, and hyphal length in RECs were measured. In experiment 1, we used inoculation or not with the AMF Rhizophagus irregularis to establish the mycorrhizal treatment levels. A significant negative effect of mycorrhizal hyphae on viability of seeds was observed in experiments 1 and 3, and a similar trend in experiment 2. All three experiments showed that water content, soil pH, and AMF extraradical hyphal lengths were increased in the presence of AMF, but available P was decreased significantly. Viability of seeds in the soil seed bank correlated negatively with water content, soil pH, and AMF extraradical hyphal lengths and positively with soil P availability. Our results suggest that AMF can have a negative impact on soil seed viability, which is in contrast to the often‐documented positive effects on plant growth. Such effects must now be included in our conceptual models of the AM symbiosis.  相似文献   

9.
Neotyphodium endophytes and arbuscular mycorrhizal (AM) fungi are common constituents of natural grasslands. The plant–endophyte symbiosis can introduce changes in soil conditions that affect the density and activity of different functional groups of soil organisms. In the present work we performed in vitro assays to evaluate the effect of root and endophyte exudates on the pre-infective state of mycorrhizal fungi (Gigaspora margarita and G. rosea). Plant roots of Bromus setifolius from populations of Patagonia, and four strains of Neotyphodium were used to obtain the exudates. Root exudates of infected plants, at a high concentration, significantly increased AMF hyphal branches and length relative to exudates from naturally endophyte free plants. The effect of Neotyphodium endophyte exudates on AMF mycelial length varied depending on strain and the concentration used, suggesting a differential interaction between endophyte and AMF species. AMF hyphal branches were increased by Neotyphodium fungal exudates in both mycorrhizal species. A few previous studies have suggested that Neotyphodium endophytes can reduce mycorrhizal sporulation and colonization of host roots in commonly-cultivated agronomic hosts. In this study we report the opposite effect in B. setifolius. This study reports the direct and positive effect of root exudates from plants in symbiosis with Neotyphodium, on AMF pre-infective state. Further, identical effects were detected using exudates from Neotyphodium endophytes.  相似文献   

10.
Abstract. The role of gap dynamics in shaping the spatial and size distributions of the gap specialist Solidago sempervirens (seaside goldenrod) were examined on the primary dune grassland (Ammophila breviligulata, American beachgrass) of an Atlantic barrier island. Results suggest that coastal dune blowouts are patchy disturbances that allow S. sempervirens to temporarily establish and disperse seed. Natural measurements and clipping experiments demonstrated that A. breviligulata competitively dominated S. sempervirens in undisturbed grasslands. Coastal dune blow-outs reversed this dominance by temporarily burying A. breviligulata and increasing densities and above-ground biomass of S. sempervirens. Examination of size/density distributions of S. sempervirens suggested that blow-outs were seed sources but not regeneration sites. Regeneration was found primarily in neighboring transition and undisturbed grassland areas. Comparison of lateral growth by A. breviligulata on blow-out margins suggested that disturbances were closed by lateral encroachment from gap edges. After blow-out recovery, greater densities and skewed size distributions of S. sempervirens could still be detected for a number of years after blow-out recovery.  相似文献   

11.
While several recent studies have described changes in microbial communities associated with exotic plant invasion, how arbuscular mycorrhizal fungi (AMF) communities respond to exotic plant invasion is not well known, despite the salient role of this group in plant interactions. Here, we use molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam. (spotted knapweed), and in adjacent native grassland sites. Our results indicate that significant AMF community alteration occurs following C. maculosa invasion. Moreover, a significant reduction in the number of restriction fragment sizes was found for samples collected in C. maculosa-dominated areas, suggesting reduced AMF diversity. Extraradical hyphal lengths exhibited a significant, on average 24%, reduction in C. maculosa-versus native grass-dominated sites. As both AMF community composition and abundance were altered by C.maculosa invasion, these data are strongly suggestive of potential impacts on AMF-mediated ecosystem processes. Given that the composition of AMF communities has the potential to differentially influence different plant species, our results may have important implications for site restoration after weed invasion.  相似文献   

12.
Roots of Phragmites australis from three polluted soils and sediments (a periodically flooded stream bank containing organic pollutants, a high-pH drying sedimentation pond and an acidic, periodically flooded sand polluted by industrial effluents) were sampled over a 1-year cycle of plant growth to assess the degree of colonisation by arbuscular mycorrhizal fungi (AMF). At the dry sedimentation pond, root samples of Juncus effusus and Salix atrocinerea were also taken to assess the presence of AMF throughout the year. Root colonisation was low (<5% root length colonised) but arbuscule presence peaked in P. australis during the spring and autumn prior to flowering. These changes in arbuscule abundance were also seen in a parallel greenhouse trial using seed taken from one of the sites. Roots of J. effusus contained mainly vesicular colonisation but arbuscule activity peaked during the winter months (December–March). S. atrocinerea roots were found to be ectomycorrhizal throughout the year but the fine feeder roots were colonised by AMF. The results confirm that semi-aquatics, like P. australis, can become arbuscular mycorrhizal but that this status changes during the year depending on soil moisture content and plant phenology. The influence of AMF in these polluted soils is uncertain but the potential exists to establish a more diverse plant ecosystem during the landscaping of these areas (phytostabilisation) by management of adapted plant and AMF ecotypes. Accepted: 6 November 2000  相似文献   

13.
 Forest fire can affect arbuscular mycorrhizal (AM) fungi by changing the soil conditions and by directly altering AM proliferation. We studied the effects of a severe forest fire at Margalla Hills near Islamabad on the number and viability of AM fungal propagules in the burnt soil and their role in the re-establishment of post-fire infection in colonized plants. Compared with a nearby control area, the burnt site had a similar number of total spores but a lower number of viable AM fungal propagules. The roots of the two most frequent species at the burnt site, Dodonaea viscosa and Aristida adscensionis, showed a gradual increase in percentage root length colonized by AM fungi in general and hyphal infection in particular. Our results indicate resumption of mycorrhizal activity following the fire, probably from AM hyphae in the roots of these dominant shrubs. Accepted: 18 July 1997  相似文献   

14.
We investigated the functional significance of extraradical mycorrhizal networks produced by geographically different isolates of the arbuscular mycorrhizal fungal (AMF) species Glomus mosseae and Glomus intraradices. A two-dimensional experimental system was used to visualize and quantify intact extraradical mycelium (ERM) spreading from Medicago sativa roots. Growth, phosphorus (P) and nitrogen (N) nutrition were assessed in M. sativa plants grown in microcosms. The AMF isolates were characterized by differences in extent and interconnectedness of ERM. Phenotypic fungal variables, such as total hyphal length, hyphal density, hyphal length per mm of total or colonized root length, were positively correlated with M. sativa growth response variables, such as total shoot biomass and plant P content. The utilization of an experimental system in which size, growth rate, viability and interconnectedness of ERM extending from mycorrhizal roots are easily quantified under realistic conditions allows the simultaneous evaluation of different isolates and provides data with a predictive value for selection of efficient AMF.  相似文献   

15.
The status of the arbuscular mycorrhizal association in wild Agave potatorum Zucc. was studied at three semiarid sites over a 1-year period of rhizospheric soil sampling. Root colonization present at all sites and at all times of year, ranged from 20 to 83 %. The extraradical mycelia length was estimated to be from 2.64 to 5.22 m g?1 of dry soil. Spore number ranged from 20 to 192 in 100 g of soil. The number of viable mycorrhizal propagules ranged from 500 to 2,640 in 100 g of soil. Twenty species of arbuscular mycorrhizal fungi (AMF) were identified, the family Glomeracea comprising the greatest number of species (45 %). Two other fungi families Acaulosporaceae and Gigasporaceae made up 35 and 15 %, respectively. High alpha diversity and low beta diversity of AMF were found in this study. Arbuscular mycorrhizal fungi species richness in A. potatorum is high and the associated fungi appear to be an important component in semiarid ecosystems in this region of Mexico. Arbuscular mycorrhizal fungi species with small spores might be better adapted to the local environment.  相似文献   

16.
Summary Hairy root cultures of strawberry (Fragaria x ananassa Duch.) were induced with the Agrobacterium rhizogenes strain A4. Cultures were maintained on B50 medium but could also grow on a minimal medium, which did not inhibit the growth of arbuscular mycorrhizal fungi. The growth and nutrient uptake were characterized in shake flasks and in a bioreactor. Spores of the native Finnish arbuscular mycorrhizal fungus Glomus fistulosum V128 were used to infect strawberry (Fragaria x ananassa Duch. Senga Sengana) hairy roots in vitro. During cultivation, vegetative spore formation was observed. At the end of the cultivation, hyphae and arbuscules were observed in the stained roots.Abbreviations AM arbuscular mycorrhiza - AMF arbuscular mycorrhizal fungus  相似文献   

17.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gypsophila struthium growing in gypsum soils under semiarid conditions. In order to investigate the effect of plant community degradation on the AMF biodiversity at the single species level, on the basis of the plant community complexity level, we selected four areas affected by degradation and shrub species spatial heterogeneity. The AM fungal community colonizing G. struthium was investigated from the morphological and molecular points of view. All plants were well colonized and showed a high level of infective AM propagules. Roots were analyzed by polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of the ribosomal DNA small subunit region. Four AM fungal types were identified and clustered into the AM fungal family: Glomeraceae, Glomus being the only taxon present. One fungal type was present in all the selected areas. Two fungal types are distinct from any previously published sequences and could be specific to gypsum soils. The chemical–physical properties of the soil were not correlated with the AMF diversity in roots. Our data show vegetation cover complexity-dependent differences in the AM fungal community composition.  相似文献   

18.
Because of the economic and environmental importance of stabilizing fragile sand dune habitats, restoration of dunes has become a common practice. Restoration efforts in the Great Lakes and East Coast regions of North America often consist of planting monocultures of the dominant native grass species, Ammophila breviligulata. We evaluated 18 dune restoration projects in the Great Lakes region conducted over the past 25 years. We characterized attributes of diversity (plants and insects), vegetation structure (plant biomass and cover), and ecological processes (soil nutrients and mycorrhizal fungi abundance) in each restoration, and we compared these measures to geographically paired natural dune communities. Restoration sites were similar to reference sites in most measured variables. Differences between restorations and reference sites were mostly explained by differences in ages, with the younger sites supporting slightly lower plant diversity and mycorrhizal spore abundance than older sites. Plant community composition varied little between restored and reference sites, with only one native forb species, Artemisia campestris, occurring significantly more often in reference sites than restored sites. Although it remains unclear whether more diverse restoration plantings could accelerate convergence on the ecological conditions of reference dunes, in general, traditional restoration efforts involving monoculture plantings of A. breviligulata in Great Lakes sand dunes appear to achieve ecological conditions found in reference dunes.  相似文献   

19.

Aim

Few studies have analyzed life-history strategies of arbuscular mycorrhizal fungi (AMF), in terms of the different propagule types they produce, and their ability to colonize new seedlings. The aim was to assess whether life-history strategies influence AMF successional dynamics and assemblages.

Methods

Rosemary (Rosmarinus officinalis L.) seedlings, grown in a mesocosm system, were colonized by either the AMF hyphae coming from a living rosemary plant, or from spores germinating in soil. The AMF community established in the plantlets was monitored every 3 months during 2 years, using terminal restriction fragment length polymorphism of genes coding for rDNA.

Results

The two different sources of AMF propagules resulted in a different initial community colonizing rosemary roots. AMF propagating from hyphae attached to living mycorrhizal-roots seemed to colonize faster and were season-dependent. AMF taxa originating from soil-borne propagules were most frequent over time and exhibit the dominant colonization strategy in this system. The evolution of the AMF community also revealed different strategies in succession.

Conclusions

AMF associated with rosemary evidenced contrasting life-history strategies in terms of source of inoculum for new colonization and hence survival. The observed successional dynamics of AMF have implications for understanding the ecological processes in Mediterranean environments and seasonality of colonization processes.  相似文献   

20.
Garlic mustard (Alliaria petiolata) is a Eurasian native that has become invasive in North America. The invasive success of A. petiolata has been partly attributed to its production of allelopathic compounds that can limit the growth of arbuscular mycorrhizal fungi (AMF). Although such effects are well known, specific effects on the richness and community composition of AMF associated with woody species have not been explored. We collected sugar maple (Acer saccharum) seedlings from eight natural forest sites in Ohio and Massachusetts, containing areas either invaded or uninvaded by A. petiolata. We measured AMF root colonization of seedlings, isolated DNA from the roots and performed PCR-TRFLP analysis to assess the richness and community composition of AMF. As expected, we found reduced AMF colonization in A. petiolata invaded patches. A. petiolata did not alter the detected TRF richness, but was associated with significant changes in the composition of AMF communities in half of the sites monitored in each region. Our results suggest that although AMF colonization was reduced in A. petiolata patches, many indigenous AMF communities include AMF that are tolerant to allelopathic effects of A. petiolata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号