首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate antifungal activity of a novel compound (named as CF66I provisionally) against plant pathogenic fungi, mainly including Fusarium sp., Colletotrichum lindemuthianum, Rhizoctonia solani, etc. METHODS AND RESULTS: Minimal inhibition concentrations (MIC) and minimal fungicidal concentrations (MFC) of CF66I for each fungi were determined using serial broth dilution method. The data demonstrated MIC ranged from 2.5 to 20.0 microg ml(-1) and MFC were shown at levels of < or =7.5 microg ml(-1) except Fusarium sp. With reverse microscopy, profound morphological alterations of fungal cells were observed after exposure to CF66I. Conidiospores were completely inhibited, and protoplasm aggregated to form chalamydospores because of the changes of cell permeability. Some chalamydospores were broken, suggesting the compound probably possessed strong ability of damaging the cell wall. In addition, CF66I was investigated for its antifungal stability against Curvularia lunata. The results showed CF66I kept strong fungi-static activity over-wide pH range (pH 4-9) and temperature range (from -70 to 120 degrees C). CONCLUSIONS: The compound CF66I exhibited strong and stable broad-spectrum antifungal activity, and had a significant fungicidal effect on fungal cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from prebiocontrol evaluations performed to date are probably useful in the search for alternative approaches to controlling serious plant pathogens.  相似文献   

2.
A novel compound CF66I produced by Burkholeria cepacia was investigated for its antifungal effects against Fusarium solani by three different fluorescent dyes. Dual staining with propidium iodide (PI) and fluorescein diacetate (FDA) demonstrated high doses of CF66I (120.0 μg ml−1) killed the fungi by acting primarily on the cell membrane. However, at fungistatic concentration (20.0 μg ml−1) of this compound, microscopic observations revealed swelling hyphae with abnormal chitin deposition, as determined by Calcofluor white (CFW) staining, which was indicative of the alterations in cell wall structure. In addition, inhibition of intracellular esterases activity was observed. These results led us to conclude that low doses of CF66I probably inhibited the fungal growth by interfering with the cell metabolic pathways.  相似文献   

3.
The morphological effects of CF66I, an antifungal compound produced by Burkholderia cepacia, on growing hyphae of Fusarium oxysporum were studied by fluorescence microscopy (FM) and transmission electron microscopy (TEM). At 20 μg/ml, CF66I strongly inhibited growth and induced significant changes of the hyphal morphology. These changes included swelling of hyphae with considerable thickening cell wall and abnormal chitin deposition, which was indicative of the alterations in cell wall structure. Furthermore, fluorescein diacetate (FDA) staining indicated the loss of intracellular esterase activity. CF66I probably inhibits fungal growth by interfering with the cell metabolic pathways. At 120 μg/ml, CF66I killed F. oxysporum (accompanied by propidium iodide permeation, intracellular cytoplasm leakage and crushing of hyphal tips), probably by direct damage to the cell membrane. Thus, there are two different antifungal mechanisms of CF66I, depending on its concentration, and further studies on this compound might be useful for us to develop a new class of antifungal agents.  相似文献   

4.
洋葱伯克霍尔德菌CF_66抗菌物质的分离纯化及性质的研究   总被引:15,自引:0,他引:15  
洋葱伯克霍尔德菌CF-66能够抑制立枯丝核菌等若干植物病原菌和其它一些真菌的生长。CF-66菌发酵液的粗提液通过Sephadex-75pg、Sephacryl S-100柱层析分离纯化,获得抗菌物质CF66I。此抗菌物质耐热性强,耐碱,但在强酸性条件下不稳定。低浓度有机溶剂的存在有利于抑菌活性的提高。对其结构的研究表明CF66I是以(CH2CH2O)n为主要单元结构并带有酰氨键的化合物。  相似文献   

5.
Galleria mellonella apolipophorin III (apoLp-III) has been implicated in the innate immune response against bacterial infections. The protein binds components of bacterial cell wall and inhibits growth of selected Gram-positive and Gram-negative bacteria. Interaction of apoLp-III with fungal β-1,3-glucan suggests antifungal properties of the protein. In the present study, the effect of apoLp-III on the growth, metabolic activity and cell surface characteristics of selected yeasts and filamentous fungi was investigated using light, confocal and atomic force microscopy. ApoLp-III bound to the cell surface of different yeasts and filamentous fungi as confirmed by immunoblotting with anti-apoLp-III antibodies. Incubation of the fungi in the presence of apoLp-III induced alterations in growth morphology. Candida albicans underwent transition from yeast-like to hyphal growth with formation of true hyphae, whereas Fusarium oxysporum hyphae exhibited decreased metabolic activity, increased vacuolization and appearance of numerous monophialids with microconidia. Atomic force microscopy imaging demonstrated evident alterations in the fungal cell surface after incubation with apoLp-III, suggesting that the protein affected the cell wall components.  相似文献   

6.
The antifungal activity and mechanism of a 23-mer peptide, PMAP-23, derived from pig myeloid was investigated. PMAP-23 displayed strong antifungal activity against yeast and mold. To investigate the antifungal mechanism of PMAP-23, fluorescence activated flow cytometry and confocal laser scanning microscopy were performed. Candida albicans treated with PMAP-23 showed higher fluorescence intensity by propidium iodide(PI) staining, which was similar to that of Melittin than untreated cells. Confocal microscopy showed that the peptide was located in the plasma membrane. The action of peptides against fungal cell membranes was examined by treating prepared protoplasts of C. albicans with the peptide and lipid vesicle titration test. The result showed that the peptide prevented the regeneration of fungal cell walls and induced release of the fluorescent dye trapped in the artificial membrane vesicles, indicating that the peptide exerts its antifungal activity by acting on the plasma lipid membrane.  相似文献   

7.
The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a beta-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and beta-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.  相似文献   

8.
Strain CF-66 with strong antifungal activity against Rhizoctonia solani was isolated from compost samples. It is clearly demonstrated that strain CF-66 is belonging to Burkholderia cepacia complex by the morphological and biochemical tests and 16S rDNA sequence. The B. cepacia complex consists of a group of bacteria currently organized into nine genomovars, among them genomovar II and genomovar III, contain the highly epidemic strains. However, it was known that strain CF-66 is not a member of genomovar II or III of the B. cepacia complex by species-specific polymerase chain reaction assay. In this study, the antifungal compound CF66I produced by strain CF-66 was purified and characterized. Based on the nuclear magnetic resonance, GC-MS spectral and infrared spectral data, CF66I was confirmed to have amide bonds, α-metyl fatty acid, bromine, and some structural units such as CH2CH2O. CF66I is stable to high temperature, proteolytic enzymes, and organic solvents. CF66I inhibit the growth of a variety of plant pathogenic fungi and pathogenic yeast, whereas bacterial cells are unaffected. CF66I mainly reduced hyphal extension rates in a dose-dependent manner and induced severe change in cell morphology that resulted in swelled and formed very short hyphae with multiple branches.  相似文献   

9.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

10.
There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the β-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially β1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.  相似文献   

11.
Jang WS  Kim HK  Lee KY  Kim SA  Han YS  Lee IH 《FEBS letters》2006,580(5):1490-1496
Halocidin is an antimicrobial peptide isolated from the hemocytes of the tunicate. Among the several known synthetic halocidin analogues, di-K19Hc has been previously confirmed to have the most profound antibacterial activity against antibiotic-resistant bacteria. This peptide has been considered to be an effective candidate for the development of a new type of antibiotic. In this study, we have assessed the antifungal activity of di-K19Hc, against a panel of fungi including several strains of Aspergillus and Candida. As a result, we determined that the MICs of di-K19Hc against six Candida albicans and two Aspergillus species were below 4 and 16 microg/ml, respectively, thereby indicating that di-K19Hc may be appropriate for the treatment of several fungal diseases. We also conducted an investigation into di-K19Hc's mode of action against Candida albicans. Our colony count assay showed that di-K19Hc killed C. albicans within 30s. Di-K19Hc bound to the surface of C. albicans via a specific interaction with beta-1,3-glucan, which is one of fungal cell wall components. Di-K19Hc also induced the formation of ion channels within the membrane of C. albicans, and eventually observed cell death, which was confirmed via measurements of the K+ released from C. albicans cells which had been treated with di-K19Hc, as well as by monitoring of the uptake of propidium iodide into the C. albicans cells. This membrane-attacking quality of di-K19Hc was also visualized via confocal laser and scanning electron microscopy.  相似文献   

12.
Some 2,6-diarylpiperidin/tetrahydrothiopyran/tetrahydropyran-4-one oximes were synthesized in dry media under microwave irradiation and were evaluated for their in vitro antibacterial activity against clinically isolated bacterial strains i.e. S.aureus, beta-H.Streptococcus, E.coli, P.aeruginosa, S.typhii and in vitro antifungal activities against fungal strains i.e. C.albicans, Rhizopus, A.niger and A.flavus. Structure-activity relationships for the synthesized compounds showed that compounds 12 and 15 exerted excellent antibacterial activity against all the tested bacterial strains except 15 against S.aureus and beta-H.streptococcus. Against C.albicans and A.flavus, compound 15 exerted potent antifungal activities while against Rhizopus, compound 16 showed promising activity.  相似文献   

13.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

14.
This work analyses the chitin-binding and catalytic domains of the human macrophage chitotriosidase and investigates the physiological role of this glycoside hydrolase in a complex mechanism such as the innate immune system, especially its antifungal activity. Accordingly, we first analyzed the ability of its chitin-binding domain to interact with chitin embedded in fungal cell walls using the β-lactamase activity reporter system described in our previous work. The data showed that the chitin-binding activity was related to the cell wall composition of the fungi strains and that their peptide-N-glycosidase/zymolyase treatments increased binding to fungal by increasing protein permeability. We also investigated the antifungal activity of the enzyme against Candida albicans. The antifungal properties of the complete chitotriosidase were analyzed and compared with those of the isolated chitin-binding and catalytic domains. The isolated catalytic domain but not the chitin-binding domain was sufficient to provide antifungal activity. Furthermore, to explain the lack of obvious pathologic phenotypes in humans homozygous for a widespread mutation that renders chitotriosidase inactive, we postulated that the absence of an active chitotriosidase might be compensated by the expression of another human hydrolytic enzyme such as lysozyme. The comparison of the antifungal properties of chitotriosidase and lysozyme indicated that surprisingly, both enzymes have similar in vitro antifungal properties. Furthermore, despite its more efficient hydrolytic activity on chitin, the observed antifungal activity of chitotriosidase was lower than that of lysozyme. Finally, this antifungal duality between chitotriosidase and lysozyme is discussed in the context of innate immunity.  相似文献   

15.
16.
The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.  相似文献   

17.
As fungal infections are becoming more prevalent in the medical or agricultural fields, novel and more efficient antifungal agents are badly needed. Within the scope of developing new strategies for the management of fungal infections, antifungal compounds that target essential fungal cell wall components are highly preferable. Ideally, newly developed antimycotics should also combine major aspects such as sustainability, high efficacy, limited toxicity and low costs of production. A naturally derived molecule that possesses all the desired characteristics is the antifungal protein (AFP) secreted by the filamentous ascomycete Aspergillus giganteus. AFP is a small, basic and cysteine-rich peptide that exerts extremely potent antifungal activity against human- and plant-pathogenic fungi without affecting the viability of bacteria, yeast, plant and mammalian cells. This review summarises the current knowledge of the structure, mode of action and expression of AFP, and highlights similarities and differences concerning these issues between AFP and its related proteins from other Ascomycetes. Furthermore, the potential use of AFP in the combat against fungal contaminations and infections will be discussed.  相似文献   

18.

Treating fungal infections is challenging and frequently requires long-term courses of antifungal drugs. Considering the limited number of existing antifungal drugs, it is crucial to evaluate the possibility of repositioning drugs with antifungal properties and to revisit older antifungals for applications in combined therapy, which could widen the range of therapeutic possibilities. Undecanoic acid is a saturated medium-chain fatty acid with known antifungal effects; however, its antifungal properties have not been extensively explored. Recent advances indicate that the toxic effect of undecanoic acid involves modulation of fungal metabolism through its effects on the expression of fungal genes that are critical for virulence. Additionally, undecanoic acid is suitable for chemical modification and might be useful in synergic therapies. This review highlights the use of undecanoic acid in antifungal treatments, reinforcing its known activity against dermatophytes. Specifically, in Trichophyton rubrum, against which the activity of undecanoic acid has been most widely studied, undecanoic acid elicits profound effects on pivotal processes in the cell wall, membrane assembly, lipid metabolism, pathogenesis, and even mRNA processing. Considering the known antifungal activities and associated mechanisms of undecanoic acid, its potential use in combination therapy, and the ability to modify the parent compound structure, undecanoic acid shows promise as a novel therapeutic against fungal infections.

  相似文献   

19.
Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number of fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.  相似文献   

20.
Vasostatin-I, the natural fragment of chromogranin A-(1-76), is a neuropeptide able to kill a large variety of fungi and yeast cells in the micromolar range. We have examined the antifungal properties of synthetic vasostatin-I-related peptides. The most active shortest peptide, named chromofungin, corresponds to the sequence Arg(47)-Leu(66). Extensive (1)H NMR analysis revealed that it adopts a helical structure. The biophysical mechanism implicated in the interaction of chromofungin with fungi and yeast cells was studied, showing the penetration of this peptide with different lipid monolayers. In order to examine thoroughly the antifungal activity of chromofungin, confocal laser microscopy was used to demonstrate the ability of the rhodamine-labeled peptide to interact with the fungal cell wall, to cross the plasma membrane, and to accumulate in Aspergillus fumigatus, Alternaria brassicola, and Candida albicans. Our present data reveal that chromofungin inhibits calcineurin activity, extending a previous observation that the N-terminal region of chromogranin A interacts with calmodulin in the presence of calcium. Therefore, the destabilization of fungal wall and plasma membrane, together with the possible intracellular inhibition of calmodulin-dependent enzymes, is likely to represent the mechanism by which vasostatin-I and chromofungin exert antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号