首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
To determine whether the cardioprotection effect of fluvastatin mediates by toll-like receptor 4 (TLR4) signaling pathway, fifty Sprague–Dawley rats were randomly divided into five groups: sham operation group, ischemia/reperfusion (I/R) group, fluvastatin groups (high-dosage, medium-dosage, low-dosage, n = 10 in each group). Except sham operation group, the rest four groups of rats were artificially afflicted with coronary occlusion for 30 min, then reperfusion 2 h. Light microscope and transmission electronic microscope were used to observe structural changes of myocardium. RT–PCR was used to measure TLR4 mRNA expression level, TLR4 protein expression was detected by immunohistochemistry. Western blot was used to measure myocardial NF-κB protein level; ELISA was used to measure the level of TNF-α in myocardium. The results demonstrated that fluvastatin treatment markedly decreased ischemic injury caused by ischemia/reperfusion, and inhibited the expression levels of TLR4, TNF-α and NF-κB, all of which up-regulated by ischemia/reperfusion. Taken together, our results suggest that proper dosage of fluvastatin may have protective effect on the ischemic injury mediated by ischemia/reperfusion in the hearts, which might be associated with inhibition of TLR4 signaling pathway and inflammatory response during ischemia/reperfusion.  相似文献   

2.
3.
Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors (TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion (I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient cerebral ischemia.  相似文献   

4.
TLR2 has a detrimental role in mouse transient focal cerebral ischemia   总被引:8,自引:0,他引:8  
A significant up-regulation of Toll-like-receptor (TLR) mRNAs between 3 and 48 h reperfusion time after induction of transient focal cerebral ischemia for 1h was revealed by applying global gene expression profiling in postischemic mouse brains. Compared to TLR4 and TLR9, TLR2 proved to be the most significantly up-regulated TLR in the ipsilateral brain hemisphere. TLR2-protein was found to be expressed mainly in microglia in the postischemic brain tissue, but also in selected endothelial cells, neurons, and astrocytes. Additionally, TLR2-related genes with pro-inflammatory and pro-apoptotic capabilities were induced. Therefore we hypothesized that TLR2-signaling could exacerbate the primary brain damage after ischemia. Two days after induction of transient focal cerebral ischemia (1h), we found a significant decrease of the infarct volume in TLR2 deficient mice compared to wild type mice (75+/-5 vs. 42+/-7 mm(3)). We conclude that TLR2 up-regulation and TLR2-signaling are important events in focal cerebral ischemia and contribute to the deterioration of ischemic damage.  相似文献   

5.
目的:观察缺血后处理对大鼠局灶性脑缺血再灌注损伤后TLR4通路表达的影响。方法:成年健康雄性SD大鼠110只,随机分为假手术组(sham组)(n=10)、缺血再灌注组(I/R组)和后处理组(IP组),后两组又依据缺血再灌注6h、12h、24h、48h、72h不同的时间点再分五个亚组。对各组行神经行为学评分,脑组织梗死体积测量,TUNEL技术检测神经细胞凋亡的情况,免疫组织化学技术观察各组大鼠脑组织TLR4、NF-κB和TNF-α蛋白的表达,原位杂交方法检测各组大鼠脑组织TLR4mRNA、NF-κBmRNA的表达。结果:缺血后处理可下调TLR4、NF-κB、TNF-α细胞炎性因子的表达,抑制细胞凋亡、减少脑梗死体积,改善神经行为。结论:后处理可通过抑制TLR4信号通路表达,减少脑梗死体积,改善神经功能。  相似文献   

6.
Macrophages are known to express various types of endocytosis receptors that mediate the removal of foreign pathogens. Macrophage asialoglycoprotein-binding protein (M-ASGP-BP) is a Gal/GalNAc-specific lectin, which functions as an endocytosis receptor. We found here that LPS is able to down-regulate the mRNA expression of M-ASGP-BP in a time-dependent manner using thioglycolate-elicited rat and mouse peritoneal macrophages. However, LPS does not modulate the mRNA expression of M-ASGP-BP from macrophages of C3H/HeN mice, which have a point mutation of TLR4, the primary LPS receptor. Furthermore, an inhibitor of NF-κB was observed to efficiently block the suppressive effect of LPS on M-ASGP-BP as well as to inhibit the phosphorylated IκB. These results demonstrate that the mRNA expression of M-ASGP-BP is down-regulated by the LPS-mediated TLR4 pathway involving NF-κB activation, suggesting that engagement of M-ASGP-BP by LPS may yield a negative signal that interferes with the LPS-induced positive signals mediated by proinflammatory cytokines.  相似文献   

7.
目的:探讨右美托嘧啶对大鼠再灌注损伤肺组织Toll样受体素4(TLR4)表达的调控,并分析其对肺保护作用机制。方法:采用大鼠在体左侧肺缺血/再灌注(I/R)模型,50只健康雄性成年SD大鼠随机分为5组(n=10):对照组(Sham组)、缺血/再灌注组(I/R组)、右美托咪定组(Dex组)、阿替美唑组(Atip组)、右美托咪定+阿替美唑组(Dex+Atip组),实验结束后处死大鼠,留取左肺,检测肺湿干重比(W/D)和总肺水含量(TLW);光镜下观察肺组织形态结构变化;PCR检测肺组织TLR4 mRNA表达;Western blot检测肺组织TLR4的蛋白表达。结果:与Sham组相比,其余各组W/D和TLW明显升高(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量上升(P<0.01),光镜显示肺组织结构出现明显损伤性变化;与I/R组相比,Dex组W/D和TLW下降(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量降低(P<0.01),光镜下肺组织损伤减轻;与Dex组比较,Dex+Atip组W/D和TLW明显升高(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量上升(P<0.01),光镜肺组织结构损伤严重;I/R组、Atip组、Dex+Atip组两两比较,以上各指标均无统计学差异(P > 0.05)。结论:I/R可引起大鼠肺组织TLR4表达上调和肺组织损伤;右美托咪啶可减轻肺I/R损伤,抑制TLR4表达,这种作用与α2-肾上腺素能受体有关。  相似文献   

8.
9.
10.
Summary Hydroxyhydroquinone or 1,2,4-benzenetriol (BT) detected in the beverages has a structure that coincides with the water-soluble form of a sesame lignan, sesamol. We previously showed that sesame antioxidants had neuroprotective abilities due to their antioxidant properties and/or inducible nitric oxide synthase (iNOS) inhibition. However, studies show that BT can induce DNA damage through the generation of reactive oxygen species (ROS). Therefore, we were interested to investigate the neuroprotective effect of BT in vitro and in vivo. The results showed that instead of enhancing free radical generation, BT dose-dependently (10–100 μM) attenuated nitrite production, iNOS mRNA and protein expression in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. BT significantly reduced LPS-induced NF-κB and p38 MAPK activation. It also significantly reduced the generation of ROS in H2O2-induced BV-2 cells and in H2O2-cellfree conditions. The neuroprotective effect of BT was further demonstrated in the focal cerebral ischemia model of Sprague–Dawley rat. Taken together, the inhibition of LPS-induced nitrite production might be due to the suppression of NF-κB, p38 MAPK signal pathway and the ROS scavenging effect. These effects might help to protect neurons from the ischemic injury.  相似文献   

11.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

12.
王鹏  赵仁亮  吕敬雷  隋雪琴  高翔 《生物磁学》2012,(23):4419-4423
目的:观察缺血后处理对大鼠局灶性脑缺血再灌注损伤后TLR4通路表达的影响。方法:成年健康雄性SD大鼠110只,随机分为假手术组(sham组)(n=10)、缺血再灌注组(I/R组)和后处理组(IP组),后两组又依据缺血再灌注6h、12h、24h、48h、72h不同的时间点再分五个亚组。对各组行神经行为学评分,脑组织梗死体积测量,TUNEL技术检测神经细胞凋亡的情况,免疫组织化学技术观察各组大鼠脑组织TLR4、NF—KB和TNF—a蛋白的表达,原位杂交方法检测各组大鼠脑组织TLR4mRNA、NF-KBmRNA的表达。结果:缺血后处理可下调TLR4、NF-KB、TNF-a细胞炎性因子的表达,抑制细胞凋亡、减少脑梗死体积,改善神经行为。结论:后处理可通过抑制TLR4信号通路表达,减少脑梗死体积,改善神经功能。  相似文献   

13.
Rut-bpy is a novel nitrosyl–ruthenium complex releasing NO into the vascular system. We evaluated the effect of Rut-bpy (100 mg/kg) on a rat model of brain stroke. Forty rats were assigned to four groups (Saline solution [SS], Rut-bpy, SS+ischemia–reperfusion [SS+I/R] and Rut-bpy+ischemia–reperfusion [Rut-bpy+I/R]) with their mean arterial pressure (MAP) continuously monitored. The groups were submitted (SS+I/R and Rut-bpy+I/R) or not (SS and Rut-bpy) to incomplete global brain ischemia by occlusion of the common bilateral carotid arteries during 30 min followed by reperfusion for further 60 min. Thirty minutes before ischemia, rats were treated pairwise by intraperitoneal injection of saline solution or Rut-bpy. At the end of experiments, brain was removed for triphenyltetrazolium chloride staining in order to quantify the total ischemic area. In a subset of rats, hippocampus was obtained for histopathology scoring, nitrate and nitrite measurements, immunostaining and western blotting of the nuclear factor- κB (NF-κB). Rut-bpy pre-treatment decreased MAP variations during the transition from brain ischemia to reperfusion and decreased the fractional injury area. Rut-bpy pre-treatment reduced NF-κB hippocampal immunostaining and protein expression with improved histopathology scoring as compared to the untreated operated control. In conclusion, Rut-bpy improved the total brain infarction area and hippocampal neuronal viability in part by inhibiting NF-κB signaling and helped to stabilize the blood pressure during the transition from ischemia to reperfusion.  相似文献   

14.
Summary Nuclear factor (NF)-κB is important in the generation of inflammation. Besides regulating lipid metabolism, peroxisome proliferator-activated receptor (PPAR)-α activators also reduce NF-κB activation to terminate activation of inflammatory pathways. Gynostemma pentaphyllum (GP) has been used to treat various inflammatory diseases and hyperlipidemia. Here, we demonstrate that GP extract and one of its main components, Gypenoside XLIX (Gyp-XLIX) inhibited LPS-induced NF-κB activation in murine macrophages. Furthermore, Gyp-XLIX restored the LPS- and TNF-α-induced decrease in cytosolic I-κBα protein expression and inhibited the translocation of NF-κB(p65) to the nucleus in THP-1 monocyte and HUVEC cells. The inhibition of LPS- and TNF-α-induced NF-κB luciferase activity in macrophages was abolished by MK-886, a selective PPAR-α antagonist. GP extract and Gyp-XLIX (EC50: 10.1 μM) enhanced PPAR-α luciferase activity in HEK293 cells transfected with the tK-PPREx3-Luc reporter plasmid and expression vectors for PPAR-α. Additionally, Gyp-XLIX specifically enhanced PPAR-α mRNA and protein expression in THP-1-derived macrophage cells. The selectivity of Gyp-XLIX for PPAR-α was demonstrated by the activation of only PPAR-α in HEK293 cells transfected with expression vectors for PPAR-α, PPAR-β/δ or PPAR-γ1 plasmids and in THP-1-derived macrophage naturally expressing all three PPAR isoforms. The present study demonstrates that Gyp-XLIX, a naturally occurring gynosaponin, inhibits NF-κB activation via a PPAR-α-dependent pathway.Tom Hsun-Wei Huang and Yuhao Li contributed equally.  相似文献   

15.
The tissue destruction characteristic of syphilis infection may be caused by inflammation due to Treponema pallidum and the ensuing immune responses to the pathogen. T. pallidum membrane proteins are thought to be potent inducers of inflammation during the early stages of infection. However, the actual membrane proteins that induce inflammatory cytokine production are not known, nor are the molecular mechanisms responsible for triggering and sustaining the inflammatory cascades. In the present study, Tp0751 recombinant protein from T. pallidum was found to induce the production of proinflammatory cytokines, including TNF-α, IL-1βand IL-6, in a THP-1 human monocyte cell line. The signal transduction pathways involved in the production of these cytokines were then further investigated. No inhibition of TNF-a, IL-1β, or IL-6 production was observed following treatment with the SAPK/JNK specific inhibitor SP600125 or with an ERK inhibitor PD98059. By contrast, anti-TLR2 mAb, anti-CD14 mAb, and the p38 inhibitor SB203580 significantly inhibited the production of all three cytokines. In addition, pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of NF-κB, profoundly inhibited the production of these cytokines. Tp0751 treatment strongly activated NF-κB, as revealed by Western blotting. However, NF-κB translocation was significantly inhibited by treatment with PDTC. These results indicated that TLR2, CD14, MAPKs/p38, and NF-κB might be implicated in the inflammatory reaction caused by T. pallidum infection.  相似文献   

16.
Recent data argue for a pro-inflammatory role of CAMP (cathelicidin antimicrobial peptide) in adipocytes and adipose tissue (AT) and for regulatory circuits involving TLRs. In order to investigate regulatory effects of TLR2 and TLR4, 3T3-L1 adipocytes were stimulated with TLR2 agonistic lipopeptide MALP-2 and with TLR4 agonist LPS in presence or absence of signal transduction inhibitors. CAMP gene expression was analysed by quantitative real-time PCR in adipocytes and in murine AT compartments and cellular subfractions. CAMP expression was higher in gonadal than in subcutaneous AT and there was a gender-specific effect with higher levels in males. Adipocytes had higher CAMP expression than the stroma-vascular cell (SVC) fraction. MALP-2 up-regulated CAMP expression significantly, mediated by STAT3 and PI3K and potentially (non-significant trend) by NF-κB and MAPK, but not by raf-activated MEK-1/-2. Moreover, LPS proved to act as a potent inducer of CAMP via NF-κB, PI3K and STAT3, whereas specific inhibition of MAPK and MEK-1/-2 had no effect. In conclusion, activation of TLR2 and TLR4 by classical ligands up-regulates adipocyte CAMP expression involving classical signal transduction elements. These might represent future drug targets for pharmacological modulation of CAMP expression in adipocytes, especially in the context of metabolic and infectious diseases.  相似文献   

17.
Toll-like receptor (TLR1–6) mRNAs are expressed in normal human bronchial epithelial cells with higher basal levels of TLR3. TLR2 mRNA and plasma membrane protein expression was enhanced by pretreatment with Poly IC, a synthetic double-stranded RNA (dsRNA) known to activate TLR3. Poly IC also enhanced mRNA expression of adaptor molecules (MyD88 and TIRAP) and coreceptors (Dectin-1 and CD14) involved in TLR2 signaling. Additionally, mRNA expression of TLR3 and dsRNA-sensing proteins MDA5 and RIG-I increased following Poly IC treatment. In contrast, basal mRNA expression of TLR5 and TLR2 coreceptor CD36 was reduced by 77% and 62%, respectively. ELISA of apical and basolateral solutions from Poly IC-stimulated monolayers revealed significantly higher levels of IL-6 and GM-CSF compared with the TLR2 ligand PAM3CSK4. Pretreatment with anti-TLR2 blocking antibody inhibited the PAM3CSK4-induced increase in IL-6 secretion after Poly IC exposure. An increase in IL-6 secretion was also observed in cells stimulated with Alternaria extract after pretreatment with Poly IC. However, IL-6 secretion was not stimulated by zymosan or lipothechoic acid (LTA). These data demonstrated that upregulation of TLR2 following exposure to dsRNA enhances functional responses of the airway epithelium to certain (PAM3CSK4), but not all (zymosan, LTA) TLR2 ligands and that this is likely due to differences in coreceptor expression.  相似文献   

18.
Adenosine serves a number of important physiological roles in the body, which is the most widely studied endogenous signal molecules, and the underlying mechanism responsible for such cardioprotection needs more understood, particularly adenosine postconditioning in myocardial ischemia/reperfusion model. In the present study we performed to investigate the inflammatory response of adenosine postconditioning on the cardiac TNF-α expression and NF-κB activation. Eighteen rats were randomly divided into 4 groups: (1) Group A: sham operation group; (2) Group B: ischemia/reperfusion group; (3) Group C: postconditioned groups, four cycles of 30-s reperfusion/30-s occlusion were started immediately after release of the index ischemia (n = 6 each); (4) Group D: adenosine was infused 40 μg kg−1 min−1 5 min before the onset of reperfusion without subsequent postconditioning cycles. Hearts were removed at the termination of experiments, which were preserved in frozen tube and stored at −70°C refrigerator for Measurement of malonyldialdehyde (MDA), activities of the NF-κB and TNF-α and IL-10 assay. The results of this study indicate that adenosine postconditioning immediately after myocardial ischemia can reduce the myocardial tissue MDA generation and infarct size, improve cardiac function, which is coincidence with conventional postconditioning. The study also found that modulation of NF-κB activation and accordingly reduces inflammatory factor TNF-α expression may be a molecular mechanism of adenosine down-regulation of inflammatory cytokine production.  相似文献   

19.
Li S  E M  Yu B 《Molecular biology reports》2008,35(4):489-494
Adriamycin is one of the most effective and useful antineoplastic agents. Acute doxorubicin cardiotoxicity involved cardiomyocyte apoptosis. In this study, we investigated whether adriamycin induced myocardium apoptosis through activation of nuclear factor κB in rat. Forty male Wistar rats were randomly divided into five groups: control, ADR 5 mg/kg, ADR 10 mg/kg, ADR 15 mg/kg group and ADR + PDTC 200 mg/ml group. Myocardial apoptosis was detected by DNA fragmentation assay and TUNEL assay; Location and distribution of p-IκBα was observed by immunohistochemical assay; Myocardial expression of p-IκBα protein was assessed by Western blot analysis; Activity of NF-κB was evaluated by Electrophoretic Mobility Shift Assay. The myocardial apoptotic index, expression of p-IκBα, and binding activity of NF-κB increased significantly in ADR groups in dose-dependent manner. PDTC as a nonspecific inhibitor of NF-κB protected myocardium from apoptosis by inhibiting NF-κB activation. Adriamycin induces myocardium apoptosis through activation of nuclear factor κB in rat and NF-κB activation requires IκBα degradation.  相似文献   

20.
The R753Q polymorphism in the Toll-IL-1 receptor domain of Toll-like receptor 2 (TLR2) has been linked to increased incidence of tuberculosis and other infectious diseases, but the mechanisms by which it affects TLR2 functions are unclear. Here, we studied the impact of the R753Q polymorphism on TLR2 expression, hetero-dimerization with TLR6, tyrosine phosphorylation, and recruitment of myeloid differentiation primary response protein (MyD) 88 and MyD88 adapter-like (Mal). Complementation of HEK293 cells with transfected WT or R753Q TLR2 revealed their comparable total levels and only minimal changes in cell surface expression of the mutant species. Notably, even a 100-fold increase in amounts of transfected R753Q TLR2 versus WT variant did not overcome the compromised ability of the mutant TLR2 to activate nuclear factor κB (NF-κB), indicating that a minimal decrease in cell surface levels of the R753Q TLR2 cannot account for the signaling deficiency. Molecular modeling studies suggested that the R753Q mutation changes the electrostatic potential of the DD loop and results in a discrete movement of the residues critical for protein-protein interactions. Confirming these predictions, biochemical assays demonstrated that R753Q TLR2 exhibits deficient agonist-induced tyrosine phosphorylation, hetero-dimerization with TLR6, and recruitment of Mal and MyD88. These proximal signaling deficiencies correlated with impaired capacities of the R753Q TLR2 to mediate p38 phosphorylation, NF-κB activation, and induction of IL-8 mRNA in transfected HEK293 cells challenged with inactivated Mycobacterium tuberculosis or mycobacterial components. Thus, the R753Q polymorphism renders TLR2 signaling-incompetent by impairing its tyrosine phosphorylation, dimerization with TLR6, and recruitment of Mal and MyD88.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号