首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ginsenoside Rg1 promotes antioxidative protection and intracellular calcium homeostasis in cardiomyocytes hypoxia/reoxygenation (H/R) model. However, the pharmacological effects of G-Rg1 on autophagy in cardiomyocytes have not been reported. In this study, we employed H9c2 cardiomyocytes as a model to investigate the effects of G-Rg1 on autophagy in cardiomyocytes under H/R stress. Our results showed that H/R induced increased level of LC3B-2, an autophagy marker, in a time-dependent manner in association with decreased cell viability and cellular ATP content. H/R-induced autophagy and apoptosis were further confirmed by morphological examination. 100 μmol/l Rg1-inhibited H/R induced autophagy and apoptosis, and this was associated with the increase of cellular ATP content and the relief of oxidative stress in the cells. Mechanistically, we found that Rg1 inhibited the activation of AMPKα, promoted the activation of mTOR, and decreased the levels of LC3B-2 and Beclin-1. In conclusion, our data suggest that H/R induces autophagy in H9c2 cells leading to cell injury. Rg1 inhibits autophagosomal formation and apoptosis in the cells, which may be beneficial to the survival of cardiomyocytes under H/R.  相似文献   

2.
3.
The present study aimed to examine the protective effect of ginsenoside Rg1 against colistin-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Ginsenoside Rg1 was shown to elevate cell viability, decrease levels of malondialdehyde and intracellular reactive oxygen species, enhance activity of superoxide dismutase and glutathione, and decrease the release of cytochrome-c, formation of DNA fragmentation in colistin-treated PC12 cells. Ginsenoside Rg1 also reversed the increased caspase-9 and -3 mRNA levels caused by colistin in PC12 cells. These results suggest that ginsenoside Rg1 exerts a neuroprotective effect on colistin-induced neurotoxicity in PC12 cells, at least in part, via the inhibition of oxidative stress, prevention of apoptosis mediated via mitochondria pathway. Co-administration of ginsenoside Rg1 highlights the potential to increase the therapeutic index of colistin.  相似文献   

4.
Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.  相似文献   

5.
Adverse cardiac remodeling may lead to the development and progression of heart failure, which is lack of effective clinical treatment. Ginsenoside Rg1 (GRg1), a primary ingredient of Panax ginseng, protects against diverse cardiovascular disease, but its effects on cardiac remodeling remain unclear. Thus, we investigated the protective effect and mechanism of GRg1 on cardiac remodeling after myocardial infarction. GRg1 significantly ameliorated cardiac remodeling in mice with left anterior descending coronary artery ligation, reflected by reduced left ventricular dilation and decreased cardiac fibrosis, accompanied by improved cardiac function. Mechanistically, GRg1 considerably increased mitophagosomes formation, ameliorated cardiac mitochondria damage, and enhanced SIRT1/PINK1/Parkin-mediated mitophagy during cardiac remodeling. Consistently, GRg1 increased cell viability and attenuated apoptosis and fibrotic responses in H2O2-treated H9c2 cells by promoting the SIRT1/PINK1/Parkin axis. Furthermore, SIRT1-specific inhibitor (EX527) or the use of small interfering RNA against Parkin abolished the protective effect of GRg1 in vitro. These findings reveal a novel mechanism of GRg1 alleviating cardiac remodeling via enhancing SIRT1/PINK1/Parkin-mediated mitophagy.  相似文献   

6.
Ginsenoside Rg1 is a major active ingredient of Panax notoginseng radix which has demonstrated a number of pharmacological actions including a cardioprotective effect in vivo. This study investigated the protective effect and mechanism of ginsenoside Rg1 in cardiomyocytes hypoxia/reoxygenation (H/R) model. Pretreatment with ginsenoside Rg1 (60–120 µM) reduced lactate dehydrogenase release and increased cell viability in a dose‐dependent manner. Fluorescence analysis demonstrated ginsenoside Rg1 reduced intracellular ROS and suppressed the intracellular [Ca2+] level. Cell lysate detected an increase of T‐SOD, CAT, and GSH levels. The myocardial protection of ginsenoside Rg1 during H/R is partially due to its antioxidative effect and intracellular calcium homeostasis. J. Cell. Biochem. 108: 117–124, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

8.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.  相似文献   

9.
Ma ZC  Gao Y  Wang J  Zhang XM  Wang SQ 《Life sciences》2006,79(2):175-181
Ginsenoside Rg1 (derived from ginseng root) has been found to have many vasoprotective activities. The present study was undertaken to examine effect of ginsenoside Rg1 on the secretion of nitric oxide (NO) in human umbilical vein endothelial cells (HUVECs) stimulated with or without tumor necrosis factor-alpha (TNF-alpha). We showed here that ginsenoside Rg1 can increase the basal and TNF-alpha-attenuated NO production in a dose-dependent manner. As little is known regarding the vascular molecular mechanism of ginsenoside Rg1 on HUVECs and proteomic technique has more advantages in molecular identification, we attempted to use proteomic analysis to explain vascular molecular mechanism of ginsenoside Rg1 on HUVECs. Proteomic analytical result showed that 21 protein spots were changed in TNF-alpha stimulated HUVECs, including 9 up-regulated spots, 11 down-regulated spots, and 1 spot detected in TNF-alpha stimulated group only. The expression level of proteins such as MEKK3, phosphoglycerate mutase was increased, and nitric-oxide synthase, mineralocorticoid receptor were decreased in TNF-alpha stimulated HUVECs, while ginsenoside Rg1 could prevent this change or reverse to some degree. This study suggested that NO production increased via ginsenoside Rg1 played an important role in the protective effect on TNF-alpha stimulated HUVECs and was helpful to deeply understand the active mechanism of ginsenoside Rg1 to HUVECs at the molecular level.  相似文献   

10.
Our previous studies have demonstrated that ginsenoside Rg1 is a novel class of potent phytoestrogen and can mimic the action of estradiol in stimulation of MCF-7 cell growth by the crosstalk between insulin-like growth factor-I receptor (IGF-IR)-dependent pathway and estrogen receptor (ER)-dependent pathway. The present study was designed to investigate the neuroprotective effects of ginsenoside Rg1 against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human neuroblastoma SK-N-SH cells and the possible mechanisms. Pre-treatment with ginsenoside Rg1 resulted in an enhancement of survival, and significant rescue occurred at the concentration of 0.01 μM on cell viability against 6-OHDA-induced neurotoxicity. These effects could be completely blocked by IGF-IR antagonist JB-1 or ER antagonist ICI 182780. 6-OHDA arrested the cells at G0G1 phase and prevented S phase entry. Rg1 pre-treatment could reverse the cytostatic effect of 6-OHDA. Ginsenoside Rg1 also could attenuate 6-OHDA-induced decrease in mitochondrial membrane potential. These effects could also be completely blocked by JB-1 or ICI 182780. Furthermore, 6-OHDA-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expression could be restored by Rg1 pre-treatment. Rg1 pre-treatment could reverse the down-regulation of ERα protein expression induced by 6-OHDA treatment. Cells transfected with the estrogen responsive element (ERE)-luciferase reporter construct exhibited significantly increased ERE-luciferase activity in the Rg1 presence, suggesting that the estrogenic effects of Rg1 were mediated through the endogenous ERs. These results suggest that ginsenoside Rg1 may attenuate 6-OHDA-induced apoptosis and its action might involve the activation of IGF-IR signaling pathway and ER signaling pathway.  相似文献   

11.
人参皂苷Rb1、Rg1、Re对白血病细胞株KG1α增殖的影响   总被引:1,自引:0,他引:1  
目的:探讨人参皂苷Rb1、Rg1、Re对急性髓系白血病细胞株(KG1α)增殖的影响.方法:取对数生长期KG1α细胞,分设人参皂苷Rb1、Rg1、Re组和常规培养组,以MTT比色法检测作用24h、48h、72h时对KG1α细胞增殖抑制作用,并计算Rb1的IC_(50)值,以此浓度为工作浓度,设常规培养组和处理组,台盼蓝计数法观察对KG1α细胞增殖的影响;流式细胞术测定细胞周期分布的变化.结果:MTT、台盼蓝计数显示人参皂苷单体Rb1、Rg1可抑制KG1α细胞增殖,呈浓度依赖性,以Rb1抑制效应最佳,于作用48h抑制率最高.台盼蓝计数显示人参皂苷单体Rb1-120μmol/L作用48h时抑制率达50.22%;流式细胞术结果提示,与对照组比较,Rb1-120μmol/L组G_2/M期KG1α细胞比例增加(P<0.05).结论:Rb1可抑制KG1α细胞体外增殖,其增殖抑制作用与将KG1α细胞阻滞于G_2/M期有关.  相似文献   

12.
The aim of the present study was to verify the important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against oxidative stress-induced nephrotoxicity. The free radical-scavenging activity of ginsenoside Re-serine mixture was increased by heat-processing. Ginsenoside Re was transformed into less-polar ginsenosides such as Rg(2), Rg(6) and F(4) by heat-processing, and the glucose molecule at carbon-20 was separated. The improved-free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant Maillard reaction products (MRPs) from the reaction of glucose with serine. Moreover, MRPs from ginsenoside Re-serine mixture showed protective effect against cisplatin-induced renal epithelial cell damage.  相似文献   

13.
Aberrant proliferation of vascular smooth muscle cells (VSMC) is a critical contributor to the pathogenesis of atherosclerosis (AS). Our previous studies have demonstrated that apelin-13/APJ confers a proliferative response in VSMC, however, its underlying mechanism remains elusive. In this study, we aimed to investigate the role of mitophagy in apelin-13-induced VSMC proliferation and atherosclerotic lesions in apolipoprotein E knockout (ApoE-/-) mice. Apelin-13 enhances human aortic VSMC proliferation and proliferative regulator proliferating cell nuclear antigen expression in dose and time-dependent manner, while is abolished by APJ antagonist F13A. We observe the engulfment of damage mitochondria by autophagosomes (mitophagy) of human aortic VSMC in apelin-13 stimulation. Mechanistically, apelin-13 increases p-AMPKα and promotes mitophagic activity such as the LC3I to LC3II ratio, the increase of Beclin-1 level and the decrease of p62 level. Importantly, the expressions of PINK1, Parkin, VDAC1, and Tom20 are induced by apelin-13. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. Human aortic VSMC transfected with AMPKα, PINK1, or Parkin and subjected to apelin-13 impairs mitophagy and prevents proliferation. Additional, apelin-13 not only increases the expression of Drp1 but also reduces the expressions of Mfn1, Mfn2, and OPA1. Remarkably, the mitochondrial division inhibitor-1(Mdivi-1), the pharmacological inhibition of Drp1, attenuates human aortic VSMC proliferation. Treatment of ApoE-/- mice with apelin-13 accelerates atherosclerotic lesions, increases p-AMPKα and mitophagy in aortic wall in vivo. Finally, PINK1-/- mutant mice with apelin-13 attenuates atherosclerotic lesions along with defective in mitophagy. PINK1/Parkin-mediated mitophagy promotes apelin-13-evoked human aortic VSMC proliferation by activating p-AMPKα and exacerbates the progression of atherosclerotic lesions.  相似文献   

14.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

15.
Ginsenoside has been used to treat diabetes, while ginsenoside Rg3 is the main active ingredient component of ginseng and is used to study its effects on lung tissue damage in diabetic rats. In this paper, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were applied to detect the proliferation and apoptosis of BEAS-2B cells treated with different concentrations of Rg3. The inflammatory response and pathological change in the lung tissue of diabetic rats treated with Rg3 were evaluated by enzyme-linked immunosorbent assay, quantative real-time polymerase chain reaction, and hematoxylin and eosin staining immunohistochemistry. Meanwhile, PI3K and MAPK signaling pathway proteins in lung tissue were determined by Western blot analysis. The results showed that ginsenoside Rg3 had no significant influence on the proliferation and apoptosis of BEAS-2B cells. Ginsenoside Rg3 can inhibit inflammatory response and promote the activation of PI3K and MAPK signaling pathways to prevent damages of lung tissues induced by hyperglycemia. The protective effect provided by ginsenoside Rg3 indicates that ginsenoside Rg3 is a potential drug for the treatment of diabetes.  相似文献   

16.
Our previous studies have assessed ginsenoside Rg1 (Rg1)‐mediated protection in a type 1 diabetes rat model. To uncover the mechanism through which Rg1 protects against cardiac injury induced by diabetes, we mimicked diabetic conditions by culturing H9C2 cells in high glucose/palmitate. Rg1 had no toxic effect, and it alleviated the high glucose/palmitate damage in a dose‐dependent manner, as indicated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and lactate dehydrogenase release to the culture medium. Rg1 prevented high glucose/palmitate‐induced cell apoptosis, assessed using cleaved caspase‐3 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Rg1 also reduced high glucose‐/palmitate‐induced reactive oxygen species formation and increased intracellular antioxidant enzyme activity. We found that Rg1 activates protein kinase B (AKT)/glycogen synthase kinase‐3 (GSK‐3β) pathway and antioxidant nuclear factor erythroid 2‐related factor 2 (Nrf2) pathway, indicated by increased phosphorylation of AKT and GSK‐3β, and nuclear translocation of Nrf2. We used phosphatidylinositol‐3‐kinase inhibitor Ly294002 to block the activation of the AKT/GSK‐3β pathway and found that it partially reversed the protection by Rg1 and decreased Nrf2 pathway activation. The results suggest that Rg1 exerts a protective effect against high glucose and palmitate damage that is partially AKT/GSK‐3β/Nrf2‐mediated. Further studies are required to validate these findings using primary cardiomyocytes and animal models of diabetes.  相似文献   

17.
The mitochondrial kinase PINK1 and the ubiquitin ligase Parkin are participating in quality control after CCCP- or ROS-induced mitochondrial damage, and their dysfunction is associated with the development and progression of Parkinson''s disease. Furthermore, PINK1 expression is also induced by starvation indicating an additional role for PINK1 in stress response. Therefore, the effects of PINK1 deficiency on the autophago-lysosomal pathway during stress were investigated. Under trophic deprivation SH-SY5Y cells with stable PINK1 knockdown showed downregulation of key autophagic genes, including Beclin, LC3 and LAMP-2. In good agreement, protein levels of LC3-II and LAMP-2 but not of LAMP-1 were reduced in different cell model systems with PINK1 knockdown or knockout after addition of different stressors. This downregulation of autophagic factors caused increased apoptosis, which could be rescued by overexpression of LC3 or PINK1. Taken together, the PINK1-mediated reduction of autophagic key factors during stress resulted in increased cell death, thus defining an additional pathway that could contribute to the progression of Parkinson''s disease in patients with PINK1 mutations.  相似文献   

18.
利用菌种黑根霉Rhizopus sp.对人参皂苷Re进行生物转化,并对人参皂苷Re及其发酵产物进行HPLC系统分析比较,经液相色谱-质谱分析得出人参皂苷Re转化率为92.16%,并制备出人参皂苷Re发酵产物中峰值升高的成分,转化后的人参皂苷发酵产物中化合物1确定为人参皂苷Rg2,化合物2为Rg2的同分异构体,得率为10.13%;化合物3和化合物4确定为人参皂苷Rg5/Rk1,得率为29.23%。从结果初步推测得出人参皂苷Re被黑根霉转化为人参皂苷Rg2的机理,人参皂苷Re转化成人参皂苷Rg5/Rk1的机理还有待于进一步研究。  相似文献   

19.
Our previous study has shown that PTEN‐induced novel kinase 1 (PINK1) knocking down significantly induced mitochondrial fragmentation. Although PINK1 is proved to be associated with autosomal recessive parkinsonism and its function in this chronic pathological process is widely studied, its role in acute energy crisis such as ischemic stroke is poorly known. In this study by employing an oxygen–glucose deprivation (OGD) neuronal model, we explored the function of PINK1 in cerebral ischemia. Human PINK1, two PINK1 mutants W437X and K219M, or Pink1 shRNA were transduced before OGD using lentiviral delivery. Our results showed that over‐expression of wild‐type PINK1 significantly ameliorated OGD induced cell death and energy disturbance including reduced ATP generation and collapse of mitochondrial membrane potential. PINK1 over‐expression also reversed OGD increased mitochondrial fragmentation, and suppressed the translocation of the mitochondrial fission protein dynamin‐related protein 1 (Drp1) from the cytosol to the mitochondria. Transduction of the mutant PINK1 failed to provide any protective effect, while knockdown of Pink1 significantly increased the severity of OGD‐induced neuronal damage. Importantly, inhibition of Drp1 reversed the effects of knocking down Pink1 on neuronal death and ATP production in response to OGD. This study demonstrates that PINK1 prevents ischemic damage in neurons by attenuating mitochondrial translocation of Drp1, which maintains mitochondrial function and inhibits ischemia‐induced mitochondrial fission. These novel findings implicate a pivotal role of PINK1 regulated mitochondrial dynamics in the pathology of ischemic stroke.

  相似文献   


20.
Objective:The lymphatic system plays an important role in joint diseases. This study aimed to evaluate the effects of ginsenoside Rg1 on lymphatic drainage and accumulation of inflammatory products in the joints.Methods:Two-month-old transgenic mice that overexpress tumor necrosis factor alpha (TNF-α; TNF-Tg) were used as the animal models. Ginsenoside Rg1 was administered for 12 weeks and the lymphatic drainage in the mice was evaluated using near infrared-indocyanine green (NIR-ICG) lymphatic imaging system. The clinical symptoms of arthritis were evaluated weekly. The ankle and knee joints were harvested for hematoxylin-eosin (HE), alcian blue/orange G (ABOG), and tartrate-resistant acid phosphatase (TRAP) staining, and the foot dorsal skin was used for whole-mount immuno-staining. Simultaneously, the serum levels of IL-6 and TNF-α were detected using enzyme-linked immunosorbent assay (ELISA).Results:Ginsenoside Rg1 significantly improved the lymphatic drainage function, reduced synovial inflammation and bone erosion, decreased serum IL-6 and TNF-α concentration, and increased smooth muscle coverage on the collecting lymphatic vessels in the foot skin of the TNF-Tg mice. Furthermore, ginsenoside Rg1 treatment for 12 weeks did not cause any damage to the liver and kidney tissues.Conclusion:Ginsenoside Rg1 improves lymphatic drainage and joint inflammation in TNF-Tg mice. Therefore, ginsenoside Rg1 has the potential to be a candidate drug for the treatment of inflammatory arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号