首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Lung cancer, predominantly non-small cell lung cancer (NSCLC), remains the leading cause of cancer-related deaths worldwide. Although epidermal growth factor receptor (EGFR) signaling is important and well studied with respect to NSCLC progression, little is known about how miRNAs mediate EGFR signaling to modulate tumorigenesis. To identify miRNAs that target EGFR, we performed a bioinformatics analysis and found that miR-542-5p down-regulates EGFR mRNA and protein expression in human lung cancer cells (H3255, A549, Hcc827). We observed increases in EGFR association with Ago2 in miR-542-5p-transfected cells. Interestingly, we observed an inverse correlation of miR-542-5p expression and EGFR protein levels in human lung cancer tissue samples, suggesting that miR-542-5p directly targets EGFR mRNA. Furthermore, we found that miR-542-5p inhibited the growth of human lung cancer cells. Our findings suggest that miR-542-5p may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel therapeutic target in lung cancer.  相似文献   

2.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

3.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

4.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

5.
6.
Liquid biopsy refers to the sampling, screening, and detecting potential biomarkers in unique liquid samples for clinical use. Lung cancer is one of the most highly frequent cancer subtypes, which is hard to be early diagnosed and monitored by radiological and histopathological evaluation that are the most general and accurate methods. Circulating miRNA is a potential clinical examination index for tumor detection and monitoring tumorigenesis progression using liquid biopsy. However, recognizing and validating the unique clinical values of each candidate circulating miRNA is expensive and time consuming. In this study, we presented a novel computational approach for identifying significant circulating miRNAs that may be applied to early screening, diagnosis, and constant monitoring of lung cancer progression. This approach incorporated several machine learning algorithms and was applied on the expression profiles of circulating miRNAs on lung cancer patients and control samples. In brief, a powerful feature selection method, minimum redundancy maximum relevance, was adopted to evaluate the importance of all features, resulting in a feature list. Then, incremental feature selection incorporating random forest followed to extract key circulating miRNAs. At the same time, an efficient classifier with MCC 0.740 was built. Top five circulating miRNAs, including miR-92a, miR-140-5p, miR-331-3p, miR-223, miR-374a, were analyzed and confirmed that they participated in the pathogenesis of lung cancer, indicating their significant prognosis power in lung cancer.  相似文献   

7.
BackgroundChemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown.PurposeTo discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression.Study design and methodsA/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied.ResultsThe expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p).ConclusionThe present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.  相似文献   

8.
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-Met by binding to its 3′-untranslated region. Silencing of c-Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.  相似文献   

9.
10.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

11.
转移和复发是恶性肿瘤的重要特征。肿瘤细胞的增殖、浸润、侵袭能力与肿瘤的复发和转移息息相关。非编码小RNA通过转录后水平参与肿瘤的发生和发展过程。其中,miR-139-5p成为研究热点之一。在许多肿瘤中都发现miR-139-5p的异常表达,它参与了肿瘤细胞的增殖、分化、转移和浸润,调节肿瘤细胞对化疗药物敏感性,并与肿瘤患者的预后相关。因此,miR-139-5p可能成为肿瘤治疗的一个新靶点。本文对miR-139-5p与肿瘤的关系作一综述。系统地了解它在恶性肿瘤进程中的作用,为广大研究者及临床工作者提供新思路新方法。  相似文献   

12.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

13.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

14.
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to the development of invasion and metastasis. Recent data strongly suggests the important role of miRNAs in cancer progression, including invasion and metastasis. Here, we found miR-217 expression was much lower in highly invasive MHCC-97H HCC cells and metastatic HCC tissues. Restored miR-217 expression with miR-217 mimics inhibited invasion of MHCC-97H cells. Inversely, miR-217 inhibition enhanced the invasive ability of Huh7 and MHCC-97L cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated E2F3 was a novel direct target of miR-217. Moreover, E2F3 protein level was positively associated with HCC metastasis and functional analysis confirmed the positive role of E2F3 in HCC cell invasion. Our findings suggest miR-217 function as a potential tumor suppressor in HCC progression and miR-217-E2F3 axis may be a novel candidate for developing rational therapeutic strategies.  相似文献   

15.
Non- small- cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between paclitaxel sensitive lung cancer cells A549 and its paclitaxel-resistant cell variant (A549-T24). We identified miR-17-5p was one of most significantly downregulated miRNAs in paclitaxel-resistant lung cancer cells compared to paclitaxel sensitive parental cells. We found that overexpression of miR-17-5p sensitized paclitaxel resistant lung cancer cells to paclitaxel induced apoptotic cell death. Moreover, in this report we demonstrated that miR-17-5p directly binds to the 3′-UTR of beclin 1 gene, one of the most important autophagy modulator. Overexpression of miR-17-5p into paclitaxel resistant lung cancer cells reduced beclin1 expression and a concordant decease in cellular autophagy. We also observed similar results in another paclitaxel resistant lung adenosquamous carcinoma cells (H596-TxR). Our results indicated that paclitaxel resistance of lung cancer is associated with downregulation of miR-17-5p expression which might cause upregulation of BECN1 expression.  相似文献   

16.
MicroRNAs (miRNAs) have emerged as powerful regulators of multiple processes linked to human cancer, including cell apoptosis, proliferation and migration, suggesting that the regulation of miRNA function could play a critical role in cancer progression. Recent studies have found that human serum/plasma contains stably expressed miRNAs. If they prove indicative of disease states, miRNAs measured from peripheral blood samples may be a source for routine clinical detection of cancer. Our studies showed that both miR-508-3p and miR-509-3p were down-regulated in renal cancer tissues. The level of miR-508-3p but not miR-509-3p in renal cell carcinoma (RCC) patient plasma demonstrated significant differences from that in control plasma. In addition, the overexpression of miR-508-3p and miR-509-3p suppressed the proliferation of RCC cells (786-0), induced cell apoptosis and inhibited cell migration in vitro. Our data demonstrated that miR-508-3p and miR-509-3p played an important role as tumor suppressor genes during tumor formation and that they may serve as novel diagnostic markers for RCC.  相似文献   

17.
Cancer-associated fibroblasts (CAFs) promote tumorigenesis, growth, invasion and metastasis of cancer, whereas normal fibroblasts (NFs) are thought to suppress tumor progression. Little is known about miRNAs expression differences between CAFs and NFs or the patient-to-patient variability in miRNAs expression in breast cancer. We established primary cultures of CAFs and paired NFs from six resected breast tumor tissues that had not previously received radiotherapy or chemotherapy treatment and analyzed with miRNAs microarrays. The array data were analyzed using paired SAM t-test and filtered according to α and q values. Pathway analysis was conducted using DAVID v6.7. We identified 11 dysregulated miRNAs in CAFs: three were up-regulated (miR-221-5p, miR-31-3p, miR-221-3p), while eight were down-regulated (miR-205, miR-200b, miR-200c, miR-141, miR-101, miR-342-3p, let-7g, miR-26b). Their target genes are known to affect cell differentiation, adhesion, migration, proliferation, secretion and cell-cell interaction. By our knowledge it is firstly identify the expression profiles of miRNAs between CAFs and NFs and revealed their regulation on the associated signaling pathways.  相似文献   

18.
MicroRNAs (miRNAs) have been shown to function as key regulators of tumor progression and metastasis. Recent studies have indicated that the miRNAs comprising the miR-23b/27b/24 cluster might influence tumor metastasis, although the precise nature of this regulation remains unclear. Here, expression of the miR-23b/27b/24 cluster is found to correlate with metastatic potential in mouse and human breast cancer cell lines and is elevated in metastatic lung lesions in human breast cancer patients. Ectopic expression of the miRNAs in the weakly metastatic mouse 4TO7 mammary tumor cell line had no effect on proliferation or morphology of tumor cells in vitro but was found to increase lung metastasis in a mouse model of breast cancer metastasis. Furthermore, gene expression profiling analysis of miRNA overexpressing 4TO7 cells revealed the direct targeting of prosaposin (PSAP), which encodes a secreted protein found to be inversely correlated with metastatic progression in human breast cancer patients. Importantly, ectopic expression of PSAP was able to suppress the metastatic phenotype in highly metastatic 4T1 and MDA-MB-231 SCP28 cells, as well as in cells ectopically expressing miR-23b/27b/24. These findings support a metastasis-promoting function of the miR-23b/27b/24 cluster of miRNAs, which functions in part through the direct inhibition of PSAP.  相似文献   

19.
黑色素瘤是一种极易发生转移的恶性皮肤肿瘤,具有高度的致死性。上皮-间充质细胞转化(Epithelial-mesenchymal transition, EMT)在胚胎发育过程中起到非常重要的作用,同时在肿瘤的发生和恶化过程中也扮演着重要的角色。miRNA具有广谱的调节能力,对于肿瘤发生和EMT形成都能产生不同程度的影响。本文整合黑色素瘤细胞系转录组和miRNA组测序数据,在转录组数据中筛选得到参与肿瘤EMT过程的基因,通过Mirsystem软件预测并从miRNA组数据中筛选出与之负相关的11个miRNA,包括miR-130a-3p、miR-130b-3p、miR-125a-5p、miR-30a-3p、miR-195-5p、miR-345-5p、miR-509-3-5p、miR-374a-5p、miR-509-5p、miR-148a-3p和miR-330-3p。经过生物信息学分析miRNA靶基因富集的分子网络和信号途径,发现了两个与细胞发育和细胞间相互作用密切相关的网络,以及多个参与调控EMT过程的信号通路。对11个miRNA进行分子生物学验证,发现miR-195-5p、miR-130a-3p、miR-509-5p和miR-509-3-5p共4个可以调节重要肿瘤基因的miRNA。本研究运用mRNA和miRNA两种转录组的测序数据筛选EMT相关miRNA的方法,为肿瘤多组学数据整合分析提供了新的研究思路,并以期能为肿瘤精准基因组学的发展发挥重要的推进作用。  相似文献   

20.
miRNAs have been proposed to be key regulators of progression and metastasis in cancer. However, an understanding of their roles and molecular mechanisms is needed to provide deeper insights for better therapeutic opportunities. In this study we investigated the role and mechanism of miR-493 in the development and progression of nonsmall-cell lung cancer (NSCLC). Our data indicated that the expression of miR-493 was markedly reduced in pulmonary carcinoma. The ectopic expression of miR-493 impaired cell growth and invasion in vitro and in vivo. Mechanically, miR-493 commonly directly targeted E2F1, which resulted in a robust reduction of the expression of mRNA and protein. This effect, in turn, decreased the growth, invasion and metastasis of lung cancer cells. Our findings highlight the importance of miR-493 dysfunction in promoting tumor progression, and implicate miR-493 as a potential therapeutic target in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号