首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
miR-1275 is one of the microRNAs (miRNAs) that are differentially expressed during follicular atresia in pig ovaries, as identified by a miRNA microarray assay in our previous study [1]. However, its functions in follicular atresia remain unknown. In this study, we showed that miR-1275 promotes early apoptosis of porcine granulosa cells (pGCs) and the initiation of follicular atresia, and inhibits E2 release and expression of CYP19A1, the key gene in E2 production. Bioinformatics and luciferase reporter assays revealed that liver receptor homolog (LRH)-1, not CYP19A1, is a direct functional target of miR-1275. In vitro overexpression and knockdown experiments showed that LRH-1 significantly repressed apoptosis and induced E2 secretion and CYP19A1 expression in pGCs. LRH-1, whose expression was regulated by miR-1275, prevented apoptosis in pGCs. Furthermore, luciferase and chromatin immunoprecipitation assays demonstrated that LRH-1 protein bound to the CYP19A1 promoter and increased its activity. Our findings suggest that miR-1275 attenuates LRH-1 expression by directly binding to its 3’UTR. This prevents the interaction of LRH-1 protein with the CYP19A1 promoter, represses E2 synthesis, promotes pGC apoptosis, and initiates follicular atresia in porcine ovaries.  相似文献   

2.
Lin F  Li R  Pan ZX  Zhou B  Yu de B  Wang XG  Ma XS  Han J  Shen M  Liu HL 《PloS one》2012,7(6):e38640
More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.  相似文献   

3.
More than 99?% of follicles in mammalian ovaries undergo a degenerative process known as atresia, and thus only a limited number of ovarian follicles actually ovulate after full growth and development. The endocrinological regulatory mechanisms involved in follicular development have been studied extensively, but the precise and systematic molecular mechanisms of steroidogenesis enzymes involved in atresia are unclear. In the present study, we examined whether and how the steroidogenesis enzymes are involved in porcine ovary follicular atresia. Expression of steroidogenic acute regulatory protein, CYP11, CYP17, 3β-hydroxysteroid dehydrogenase (3β-HSD), CYP19, as well as related pituitary and ovarian hormone receptors were quantified in ovaries. During porcine follicular atresia, expressions of P450 cholesterol side chain cleavage enzyme, progesterone and androgen receptors increased significantly during the late atretic stage, while the expression of aromatase and follicle-stimulating hormone receptors decreased significantly in the early stage. These data suggested that the regulation of aromatase by follicle-stimulating hormone might induce follicular atresia, and that progesterone and androgen production further promoted follicular atresia. Additionally, a correlation analysis indicated a large and complex interactive network among these genes and the endocrinological microenvironment of the follicles. Significant correlations were observed between expression of steroidogenic enzymes and their receptors, and also between progesterone and 17β-estradiol (E2) levels in follicular fluid. Taken together, these results suggest that CYP19 plays a role during early atresia by regulating the production of E2, whereas CYP11 and 3β-HSD increase atresia progression by increasing progesterone levels.  相似文献   

4.
5.
The differential quantitative participation of apoptosis and necrosis in ewe antral follicles of two different sizes, separated in four stages of atresia using macroscopic, histologic, and esteroid quantification methods was assessed. Annexin V binding and propidium iodide (PI) uptake was used to detect healthy live cells (Annexin V negative/PI negative), early apoptotic cells (Annexin V+/PI-), and necrotic or late apoptotic cells (PI+). Additionally we used internucleosomal DNA fragmentation as a quantitative estimate of apoptosis. Presence and distribution of lysosomal enzymes in follicular fluid and granulosa cells was used as a measure of necrotic cell death. DNA flow cytometry and gel electrophoresis were positively correlated with the progression of atresia, small atretic follicles tend to have higher percentages of internucleosomal cleaved DNA than follicles >6 mm. Annexin/PI binding also indicates that apoptosis and necrosis increase with atresia progression, generally apoptosis outweighs necrosis in small follicles. Acid phosphatase and glucosaminidase in follicular fluid of 3-6 mm follicles showed no significant modifications between healthy and initially atretic follicles, and only a small, but significant increase in activity in advancedly atretic follicles. On the contrary, lysosomal enzyme activity in follicles >6 mm showed positive correlation between atresia stages and the activities of acid phosphatase and glucosaminidase in follicular fluid. A similar size-differential behavior was found in free or membrane-bound lysosomal enzyme activity of granulosa cells. Necrosis, but principally apoptosis, were present during all stages of follicular maturation indicating that growth and maturation of ovarian follicles involves a continuous renewal of granulosa cells, regulated by apoptosis. Mechanisms regulating this equilibrium may participate in the final destiny, whether ovulation or atresia of ovarian follicles.  相似文献   

6.
The follicle destiny towards ovulation or atresia is multi-factorial in nature and involves outcries, paracrine and endocrine factors that promote cell proliferation and survival (development) or unchain apoptosis as part of the atresia process. In several types of cells, sphingosine-1-phospate (S1P) promotes cellular proliferation and survival, whereas ceramide (CER) triggers cell death, and the S1P/CER ratio may determine the fate of the cell. The aim of present study was to quantify S1P and CER concentrations and their ratio in bovine antral follicles of 8 to 17 mm classified as healthy and atretic antral follicles. Follicles were dissected from cow ovaries collected from a local abattoir. The theca cell layer, the granulosa cells and follicular fluid were separated, and 17β-estradiol (E2) and progesterone (P4) concentrations were measured in the follicular fluid by radioimmunoassay. Based on the E2/P4 ratio, the follicles were classified as healthy (2.2±0.3) or atretic (0.2±0.3). In both follicular compartments (granulosa and theca cell layer), sphingolipids were extracted and S1P and CER concentrations were quantified by HPLC (XTerra RP18; 5 µm, 3.0×150 mm column). Results showed that in both follicular compartments, S1P concentrations were higher in healthy antral follicles than in atretic antral follicles (P<0.05). The concentration of CER in the granulosa cells was higher in atretic antral follicles than in healthy antral follicles, but no differences were observed in the theca cell layer. The S1P/CER ratio in both follicular compartments was also higher in healthy antral follicles. Interestingly, in these follicles, there was a 45-fold greater concentration of S1P than CER in the granulosa cells (P<0.05), whereas in the theca cell layer, S1P had only a 14-fold greater concentration than CER when compared with atretic antral follicles. These results suggest that S1P plays a role in follicle health, increasing cellular proliferation and survival. In contrast, reduction of S1P and the S1P/CER in the antral follicle could trigger cellular death and atresia.  相似文献   

7.
Role of gelatinase on follicular atresia in the bovine ovary   总被引:5,自引:0,他引:5  
Follicular atresia, like follicular growth and ovulation, is characterized by excessive tissue remodeling. It is hypothesized that probably one of the tissue-remodeling enzymes, such as the gelatinases, could be playing an important role in this process. The present study was undertaken to determine the role of gelatinase on follicular atresia in the cow. Follicles of 2-6 mm in diameter were dissected from ovaries, and follicular fluid was categorized according to the morphological appearance of the cumulus-oocyte complexes. Gelatinase activity within the follicular fluid was analyzed by gelatin zymography, and film in situ zymography was employed in order to localize gelatinase. TUNEL was performed on cryosectioned ovaries to understand follicular health. The concentrations of steroids in follicular fluid were also measured by solid phase fluoroimmunoassay. ProMMP-2 was detected in all normal and atretic categories of follicular fluid. The active form of MMP-2 and an additional band of proMMP-9 were detected only in atretic follicular fluid. Gelatinase activity was recorded in both granulosa cells (GCs) and theca cells (TCs) but were found in comparatively higher numbers in those follicles that exhibited a thinned and partially detached granulosa layer. TUNEL confirmed that apoptosis had commenced in the GCs of follicles of the latter category. The estradiol-17beta (E(2)):progesterone (P(4)) ratio was found to be significantly lower in atretic follicles than in normal follicles. These results suggest a plausible role for gelatinase in follicular health, especially the active form of MMP-2 and proMMP-9, and that bovine follicular fluid may be a key indicator of atresia.  相似文献   

8.
9.
Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.  相似文献   

10.
To evaluate the mechanisms involved in the reduction of estrogen concentrations in porcine follicular fluid during atresia, nonatretic and atretic follicles ranging from 4 to 7 mm in diameter were selected. Follicular fluid estrogen concentrations were 7-16-fold less in the atretic follicles. Isolated granulosa cells from atretic follicles demonstrated a significant reduction in aromatase activity and in follicle-stimulating hormone (FSH)-induced progesterone production in vitro compared to granulosa cells from nonatretic follicles. Isolated theca from atretic follicles also demonstrated a reduction in estrogen production. However, androgen concentrations were equivalent in the follicular fluid of atretic and nonatretic follicles, and theca from atretic follicles maintained testosterone and androstenedione production in vitro. The loss of thecal aromatase activity with atresia is not secondary to a reduction in FSH responsiveness, since FSH did not increase thecal progesterone production in vitro. Cell degeneration also does not account for the reduction in thecal estrogen production, since both androgen output in vitro and follicular fluid androgen concentrations were maintained. These data thus demonstrate that a mechanism other than reduced FSH responsiveness must account for the selective loss of thecal aromatase activity in this stage of atresia.  相似文献   

11.
Developmental competence of oocytes is compromised if they originate from atretic follicles. Apoptosis is the underlying process of atresia. Apoptotic changes in follicular cells are thought to influence the outcome of IVF. The aim of this study was to investigate apoptosis in different compartments of single bovine follicles (follicular wall, granulosa and cumulus cells (CC)) in relation to COC morphology, and to determine whether the addition, in vitro, of exogenous follicular cells from atretic follicles to maturing cumulus oocyte complexes (COCs) influenced the development of oocytes.Antral follicles were dissected from bovine ovaries and opened to obtain COCs and free floating granulosa cells (GC). The COCs were classified according to morphology. Apoptosis was determined in cumulus and granulosa cells and in homogenates of the remaining follicular wall.For every morphological class of COCs, a large variability of apoptotic expression was found in all follicle compartments. Follicular wall apoptosis was not correlated to COC morphology or to the percentage of apoptotic granulosa or cumulus cells. In grade 1 (best morphology) COCs, the degree of apoptosis in granulosa cells was comparable to cumulus cell apoptosis (P<0.01). The overall expression of apoptosis in granulosa cells of follicles containing grade 3 COCs (median+/-median absolute deviation: 37.8+/-13.8%) was significantly higher (P<0.05) than in follicles with grade 1 (22.7+/-10.4%) or grade 2 COCs (20.0+/-17.0%). About 48.3% of grade 3 COCs possessed strongly apoptotic cumulus cells compared to 27.8 and 28.2% of grade 1 or grade 2 COCs, respectively. Nonapoptotic cumulus complexes were observed in grades 1 and 2 COCs only.Adding exogenous follicular cells from atretic follicles to bovine COCs (grades 1 and 2) during in vitro maturation (IVM) had no impact on fertilization, blastocyst formation or hatching after IVF. This is of particular practical relevance to embryo production after ovum pick up (OPU), as during this process, good quality COCs are cultured together with simultaneously collected slightly atretic COCs.  相似文献   

12.
Fas antigen is a receptor that triggers apoptosis when bound by Fas ligand (FasL). A role for Fas antigen in follicular atresia was studied in follicles obtained during the first wave of follicular development during the bovine estrous cycle (estrus is Day 0). Granulosa and theca cells were isolated from healthy dominant follicles and the two largest atretic subordinate follicles on Day 5, atretic dominant follicles on Days 10-12, and preovulatory follicles on Day 1. Fas antigen mRNA levels were highest in granulosa cells from subordinate as compared to other follicles, and lowest in theca cells from healthy Day 5 dominant as compared to other follicles. FasL alone had no effect on viability of granulosa or theca cells but became cytotoxic in the presence of interferon-gamma (IFN). IFN has been shown to induce responsiveness to Fas antigen-mediated apoptosis in other cell types. In the presence of IFN, killing of granulosa cells by FasL was greater in subordinate compared to healthy dominant follicles on Day 5, did not differ between healthy and atretic dominant follicles, and was similar in theca among all follicles. Granulosa cells from preovulatory follicles, which had been exposed to the LH surge in vivo, were completely resistant to FasL-induced killing. In summary, Fas antigen expression, and responsiveness to Fas antigen-mediated apoptosis, vary during follicular development.  相似文献   

13.
14.
Since atretic follicles contain significant amounts of androgen and/or progesterone in their follicular fluid, we examined whether they also contribute to ovarian steroid secretion. Steroid secretion by atretic porcine follicles and their responsiveness to FSH was assessed by a perifusion system that allows for separate dynamic incubation of whole follicles in vitro. Identically treated nonatretic follicles of comparable size served as a reference group. The extent of granulosal pyknosis, on which the staging of atresia was based, was inversely related to follicular estradiol (E2) secretion and its responsiveness to FSH. Both basal and FSH-stimulated secretion of testosterone (T), androstenedione (A), and progesterone (P) were maintained by follicles in all stages of atresia. Secretion of A by late atretic follicles was greater than that in earlier stages or by nonatretic follicles. Atretic follicles may therefore release comparable or larger amounts of androgen and P into their intraovarian environment than do nonatretic follicles. We examined whether steroids secreted by atretic follicles in vitro could be utilized by nonatretic follicles. A static incubation system was used that allows for simultaneous incubation of a number of individual follicles. When nonatretic follicles were exposed to A, T, or P in physiologic concentrations (10(-7)-10(-5) M), their secretion of E2 increased 2-8-fold. Doses of FSH or LH that stimulated follicular steroid in vitro had no additional stimulatory effect when combined with A or P treatment, respectively. In conclusion, atretic follicles may contribute significantly to intraovarian levels of androgen and P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Histological indices of atresia for bovine follicles greater than or equal to 5 mm in diameter were compared with potential non-histological indices of atresia such as opaqueness of the exposed surface of non-excised follicles, concentrations of steroids in follicular fluid (FF) and specific binding of gonadotropins by granulosal cells. Each non-excised follicle was classified as clear (n=86), intermediate (n=79), or opaque (n=115), on the basis of the appearance of its exposed surface. A section of tissue from each follicle was evaluated histologically for atresia and assigned to one of the following categories: non-atretic, intermediately atretic, strongly atretic, or luteinized-atretic. Concentrations of estradiol (E), progesterone (P), and testosterone (T) and capacity of granulosal cells to bind radioactive ovine follicle-stimulating hormone (oFSH) and human chorionic gonadotropin (hCG) were determined for each follicle. Overall incidence of atresia was similar for clear (n=66%), intermediate (60%), and opaque (72%) follicles. Opaque follicles, however, were more likely to be strongly atretic (42%) than were clear (21%) or intermediate (23%) follicles. Non-atretic and intermediately atretic follicles had similar concentrations of E, P, and T and similar capacities to bind gonadotropins. Strongly atretic and luteinized-atretic follicles contained a higher concentration of P, lower E, and a reduced capacity of granulosal cells to bind oFSH than non-atretic and intermediately atretic follicles. A ratio of P:E in FF greater than or equal to 10 usually (greater than 90%) indicated that a follicle was atretic. However, lesser ratios of P:E did not accurately indicate whether follicles were atretic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Bovine ovarian antral follicles exhibit either one or the other of two patterns of granulosa cell death in atresia. Death can commence either from the antrum and progress toward the basal lamina (antral atresia) or the converse (basal atresia). In basal atresia, the remaining live antrally situated cells appeared to continue maturing. Beyond that, little is known about these distinct patterns of atresia. Healthy (nonatretic) follicles also exhibit either one or the other of two patterns of granulosa cell shape, follicular basal lamina ultrastructure or location of younger cells within the membrana granulosa. To examine these different phenotypes, the expression of the steroidogenic enzymes cholesterol side-chain cleavage cytochrome P450 (SCC) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in granulosa cells and concentrations of steroid hormones in follicular fluid were measured in individual histologically classified bovine antral follicles. Healthy follicles first expressed SCC and 3beta-HSD in granulosa cells only when the follicles reached an approximate threshold of 10 mm in diameter. The pattern of expression in antral atretic follicles was the same as healthy follicles. Basal atretic follicles were all <5 mm. In these, the surviving antral granulosa cells expressed SCC and 3beta-HSD. In examining follicles of 3-5 mm, basal atretic follicles were found to have substantially elevated progesterone (P < 0.001) and decreased androstenedione and testosterone compared to healthy and antral atretic follicles. Estradiol was highest in the large healthy follicles, lower in the small healthy follicles, lower still in the antral atretic follicles, and lowest in the basal atretic follicles. Our findings have two major implications. First, the traditional method of identifying atretic follicles by measurement of steroid hormone concentrations may be less valid with small bovine follicles. Second, features of the two forms of follicular atresia are so different as to imply different mechanisms of initiation and regulation.  相似文献   

17.
Apoptosis is a fundamental mechanism in follicular atresia and postovulatory regression in mammals, but its role in teleost ovarian function is currently unknown. This study tested the hypotheses that apoptosis mediates follicular atresia in teleosts and is inducible in vitro by incubation in serum-free conditions. Vitellogenic follicles from rainbow trout (Oncorhynchus mykiss) and goldfish (Carassius auratus) were incubated overnight in serum-free medium and examined for apoptosis by 3'-end-labeling and/or TUNEL analysis. Primary, postovulatory, and oocytectomized vitellogenic trout follicles and atretic goldfish follicles were evaluated in similar fashion. Overall, goldfish follicles had lower levels of DNA fragmentation than trout follicles. The DNA fragmentation in atretic goldfish follicles was similar to that measured in healthy vitellogenic and prematurational follicles; DNA fragmentation did not change after incubation. In the trout, postovulatory and oocytectomized vitellogenic follicles showed significantly greater in vitro susceptibility to apoptosis than intact vitellogenic follicles, whereas primary follicles were least susceptible. The TUNEL analyses revealed that in trout vitellogenic follicles, more thecal/epithelial cells than granulosa cells showed fragmented DNA in vivo, but incubation (24 h) did not result in increased apoptosis in cells of either type. These results indicate that apoptosis is involved in normal ovarian growth and postovulatory regression in teleosts, but that it does not appear to be an early event in teleost follicular atresia.  相似文献   

18.
19.
Ovarian granulosa cells synthesize heparan sulfate proteoglycans (HSPGs), that have anticoagulant properties. Moreover, HSPGs greatly increase in the granulosa cells during follicular atresia. However, the species of ovarian HSPGs have not yet been identified. Syndecan-4 (ryudocan, amphiglycan) is a membrane-spanning HSPG and a member of the syndecan family. Herein, we demonstrate that syndecan-4 is expressed in the granulosa cells of type 4-5b follicles and, most intensely, in those of the atretic follicles in the mouse ovary, as revealed by in situ hybridization. There is no relationship between syndecan-4 expression and age or sexual cycle stage. Compared with syndecan-4 expression, syndecan-1 and -3 are expressed more abundantly in postovulatory follicles and the corpora lutea, but less in the type 4-5b follicles and much less in the atretic follicles. Immunohistochemistry also demonstrates syndecan-4 expression in atretic follicles with apoptosis. The present study has revealed the distinct modes of expression of the syndecan family members, and the association of syndecan-4 expression and apoptosis in ovarian atretic follicles.  相似文献   

20.
Follicular atresia is the main process responsible for the loss of follicles and oocytes from the ovary, and it is the root cause of ovarian aging. Apoptosis of granulosa cells (GCs) is the cellular mechanism responsible for follicular atresia in mammals. Recent advances have highlighted fundamental roles for EGR1 in age-related diseases via the induction of apoptosis. In the present study, we found that the expression of EGR1 was significantly increased in aged mouse ovaries compared with young ovaries. Immunohistochemical analysis revealed strongly positive EGR1 staining in atretic follicles, especially in apoptotic granulosa cells. We further showed that EGR1 up-regulation in mouse primary granulosa cells inhibited cell proliferation and promoted apoptosis. In addition, the promotion of apoptosis in GCs by EGR1 increases over time and with reactive oxygen species (ROS) stimulation. Our mechanistic study suggested that EGR1 regulates GC apoptosis in a mitochondria-dependent manner and that this mainly occurs through the NF-κB signaling pathway. In conclusion, our results suggested that age-related up-regulation of EGR1 promotes GC apoptosis in follicle atresia during ovarian aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号