首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the molecular processes of complex cell stress signaling pathways are defined, the subsequent challenge is to elucidate how each individual event influences the final biological outcome. Phosphorylation of the translation initiation factor 2 (eIF2alpha)atSer(51) is a molecular signal that inhibits translation in response to activation of any of four diverse eIF2alpha stress kinases. We used gene targeting to replace the wild-type Ser(51) allele with an Ala in the eIF2alpha gene to test the hypothesis that translational control through eIF2alpha phosphorylation is a central death stimulus in eukaryotic cells. Homozygous eIF2alpha mutant mouse embryo fibroblasts were resistant to the apoptotic effects of dsRNA, tumor necrosis factor-alpha, and serum deprivation. TNFalpha treatment induced eIF2alpha phosphorylation and activation of caspase 3 primarily through the dsRNA-activated eIF2alpha kinase PKR. In addition, expression of a phospho-mimetic Ser(51) to Asp mutant eIF2alpha-activated caspase 3, indicating that eIF2alpha phosphorylation is sufficient to induce apoptosis. The proapoptotic effects of PKR-mediated eIF2alpha phosphorylation contrast with the anti-apoptotic response upon activation of the PKR-related endoplasmic reticulum eIF2alpha kinase, PERK. Therefore, divergent fates of death and survival can be mediated through phosphorylation at the same site within eIF2alpha. We propose that eIF2alpha phosphorylation is fundamentally a death signal, yet it may promote either death or survival, depending upon coincident signaling events.  相似文献   

2.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

3.
4.
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.  相似文献   

5.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

6.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

7.
Dar AC  Dever TE  Sicheri F 《Cell》2005,122(6):887-900
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition by and the regulation of PKR, we determined X-ray crystal structures of the catalytic domain of PKR in complex with eIF2alpha. The structures reveal that eIF2alpha binds to the C-terminal catalytic lobe while catalytic-domain dimerization is mediated by the N-terminal lobe. In addition to inducing a local unfolding of the Ser51 acceptor site in eIF2alpha, its mode of binding to PKR affords the Ser51 site full access to the catalytic cleft of PKR. The generality and implications of the structural mechanisms uncovered for PKR to the larger family of four human eIF2alpha protein kinases are discussed.  相似文献   

8.
The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.  相似文献   

9.
The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha.  相似文献   

10.
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.  相似文献   

11.
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.  相似文献   

12.
Phosphorylation of the alpha (α) subunit of the eukaryotic initiation factor 2 (eIF2) at serine 51 is an important mechanism of translational control in response to various forms of environmental stress. In metazoans, eIF2α phosphorylation is mediated by four kinases each of which becomes activated by distinct stimuli. Previous work established that expression of a chimera protein comprising of the bacteria Gyrase B N-terminal (GyrB) domain fused to the kinase domain (KD) of the eIF2α kinase PKR is capable of inducing eIF2α phosphorylation in cultured cells after treatment with the antibiotic coumermycin. Herein, we report the development of transgenic mice expressing the fusion protein GyrB.PKR ubiquitously. Treatment of mice with coumermycin induces eIF2α phosphorylation in vivo as demonstrated by immunoblotting and immunoshistochemistry of mouse tissues. The GyrB.PKR transgene represents a useful model system to investigate the biological effects of the conditional induction of eIF2α phosphorylation in vivo in the absence of parallel signaling pathways that are elicited in response to stress.  相似文献   

13.
14.
Activation of the double-stranded RNA (dsRNA)-activated protein kinase PKR results in inhibition of general translation through phosphorylation of the eukaryotic initiation factor 2 alpha-subunit on serine 51 (eIF2αSer51). Previously, we have reported that the adaptor protein Nck-1 modulates eIF2αSer51 phosphorylation by a subset of eIF2α kinases, including PKR. Herein, we demonstrate that Nck-1 prevents efficient activation of PKR by dsRNA, revealing that Nck-1 acts at the level of PKR. In agreement, Nck-1 impairs p38MAPK activation and attenuates cell death induced by dsRNA, in addition to diminish eIF2αSer51 phosphorylation. Our data show that the inhibitory effect of Nck-1 on PKR is reversible, as it could be overcome by increasing levels of dsRNA. Interestingly, we found that Nck-1 interacts with the inactive form of PKR, independently of its Src homology domains. Furthermore, we uncovered that Nck-1 is substrate of PKR in vitro. All together, our data provide the first evidence identifying Nck-1 as a novel endogenous regulator of PKR and support the notion that Nck-1-PKR interaction could be a way to limit PKR activation.  相似文献   

15.
Exposure to ultraviolet light can cause inflammation, premature skin aging, and cancer. UV irradiation alters the expression of multiple genes that encode functions to repair DNA damage, arrest cell growth, and induce apoptosis. In addition, UV irradiation inhibits protein synthesis, although the mechanism is not known. In this report, we show that UV irradiation induces phosphorylation of eukaryotic translation initiation factor 2 on the alpha-subunit (eIF2alpha) and inhibits protein synthesis in a dosage- and time-dependent manner. The UV-induced phosphorylation of eIF2alpha was prevented by the overexpression of a non-phosphorylatable mutant of eIF2alpha (S51A). PERK is an eIF2alpha protein kinase localized to the endoplasmic reticulum that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum. Expression of trans-dominant-negative mutants of PERK also prevented eIF2alpha phosphorylation upon UV treatment and protected from the associated translation attenuation. The luminal domain of dominant-negative mutant PERK formed heterodimers with endogenous PERK to inhibit the PERK signaling pathway. In contrast, eIF2alpha phosphorylation was not inhibited by overexpression of a trans-dominant-negative mutant kinase, PKR, supporting the theory that UV-induced eIF2alpha phosphorylation is specifically mediated by PERK. These results support a novel mechanism by which UV irradiation regulates translation via an endoplasmic reticulum-stress signaling pathway.  相似文献   

16.
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.  相似文献   

17.
The NS5A nonstructural protein of hepatitis C virus (HCV) has been shown to inhibit the cellular interferon (IFN)-induced protein kinase R (PKR). PKR mediates the host IFN-induced antiviral response at least in part by inhibiting mRNA translation initiation through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). We thus examined the effect of NS5A inhibition of PKR on mRNA translation within the context of virus infection by using a recombinant vaccinia virus (VV)-based assay. The VV E3L protein is a potent inhibitor of PKR. Accordingly, infection of IFN-pretreated HeLa S3 cells with an E3L-deficient VV (VVDeltaE3L) resulted in increased phosphorylation levels of both PKR and eIF2alpha. IFN-pretreated cells infected with VV in which the E3L locus was replaced with the NS5A gene (VVNS5A) displayed diminished phosphorylation of PKR and eIF2alpha in a transient manner. We also observed an increase in activation of p38 mitogen-activated protein kinase in IFN-pretreated cells infected with VVDeltaE3L, consistent with reports that p38 lies downstream of the PKR pathway. Furthermore, these cells exhibited increased phosphorylation of the cap-binding initiation factor 4E (eIF4E), which is downstream of the p38 pathway. Importantly, these effects were reduced in cells infected with VVNS5A. NS5A was also found to inhibit activation of the p38-eIF4E pathway in epidermal growth factor-treated cells stably expressing NS5A. NS5A-induced inhibition of eIF2alpha and eIF4E phosphorylation may exert counteracting effects on mRNA translation. Indeed, IFN-pretreated cells infected with VVNS5A exhibited a partial and transient restoration of cellular and viral mRNA translation compared with IFN-pretreated cells infected with VVDeltaE3L. Taken together, these results support the role of NS5A as a PKR inhibitor and suggest a potential mechanism by which HCV might maintain global mRNA translation rate during early virus infection while favoring cap-independent translation of HCV mRNA during late infection.  相似文献   

18.
The interferon induced double-stranded RNA-activated kinase, PKR, has been suggested to act as a tumor suppressor since expression of a dominant negative mutant of PKR causes malignant transformation. However, the mechanism of transformation has not been elucidated. PKR phosphorylates translation initiation factor eIF-2 alpha on Ser51, resulting in inhibition of protein synthesis and cell growth arrest. Consequently, it is possible that cell transformation by dominant negative PKR mutants is caused by inhibition of eIF-2 alpha phosphorylation. Here, we demonstrate that in NIH 3T3 cells transformed by the dominant negative PKR mutant (PKR delta 6), eIF-2 alpha phosphorylation is dramatically reduced. Furthermore, expression of a mutant form of eIF-2 alpha, which cannot be phosphorylated on Ser51 also caused malignant transformation of NIH 3T3 cells. These results are consistent with a critical role of phosphorylation of eIF-2 alpha in control of cell proliferation, and indicate that dominant negative PKR mutants transform cells by inhibition of eIF-2 alpha phosphorylation.  相似文献   

19.
20.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号