首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

2.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

3.
Taylor SS  Haste NM  Ghosh G 《Cell》2005,122(6):823-825
The antiviral RNA-dependent protein kinase, PKR, binds to viral double-stranded RNA in the cell and halts protein synthesis by phosphorylating the alpha subunit of the translation initiation factor eIF2. In this issue of Cell, two complementary papers Dar et al. (2005) and Dey et al. (2005) address the interaction between PKR and eIF2alpha. The structures of eIF2alpha bound to PKR reveal that PKR forms a dimer, the interface of which is essential for kinase activation, and demonstrate how this protein substrate docks to its kinase. The structures, coupled with mutagenesis analysis, also demonstrate how phosphorylation of the activation loop can allosterically couple two distal regions, the dimerization and substrate recognition interfaces.  相似文献   

4.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

5.
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.  相似文献   

6.
The interferon (IFN)-inducible, double-stranded RNA activated protein kinase (PKR) is a dual-specificity kinase, which has an essential role in the regulation of protein synthesis by phosphorylating the translation eukaryotic initiation factor 2 (eIF2). Here, we show the tyrosine (Tyr) phosphorylation of PKR in response to type I or type II IFNs. We show that PKR physically interacts with either Jak1 or Tyk2 in unstimulated cells and that these interactions are increased in IFN-treated cells. We also show that PKR acts as a substrate of activated Jaks, and is phosphorylated at Tyr 101 and Tyr 293 both in vitro and in vivo. Moreover, we provide strong evidence that both the induction of eIF2alpha phosphorylation and inhibition of protein synthesis by IFN are impaired in cells lacking Jak1 or Tyk2, which corresponds to a lack of induction of PKR tyrosine phosphorylation. We conclude that PKR tyrosine phosphorylation provides an important link between IFN signalling and translational control through the regulation of eIF2alpha phosphorylation.  相似文献   

7.
Phosphoinositide-3 kinase (PI3K) plays an important role in signal transduction in response to a wide range of cellular stimuli involved in cellular processes that promote cell proliferation and survival. Phosphorylation of the alpha subunit of the eukaryotic translation initiation factor eIF2 at Ser51 takes place in response to various types of environmental stress and is essential for regulation of translation initiation. Herein, we show that a conditionally active form of the eIF2alpha kinase PKR acts upstream of PI3K and turns on the Akt/PKB-FRAP/mTOR pathway leading to S6 and 4E-BP1 phosphorylation. Also, induction of PI3K signaling antagonizes the apoptotic and protein synthesis inhibitory effects of the conditionally active PKR. Furthermore, induction of the PI3K pathway is impaired in PKR(-/-) or PERK(-/-) mouse embryonic fibroblasts (MEFs) in response to various stimuli that activate each eIF2alpha kinase. Mechanistically, PI3K signaling activation is indirect and requires the inhibition of protein synthesis by eIF2alpha phosphorylation as demonstrated by the inactivation of endogenous eIF2alpha by small interfering RNA or utilization of MEFs bearing the eIF2alpha Ser51Ala mutation. Our data reveal a novel property of eIF2alpha kinases as activators of PI3K signaling and cell survival.  相似文献   

8.
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.  相似文献   

9.
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.  相似文献   

10.
The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2alpha phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2alpha kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2alpha kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.  相似文献   

11.
Dar AC  Dever TE  Sicheri F 《Cell》2005,122(6):887-900
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition by and the regulation of PKR, we determined X-ray crystal structures of the catalytic domain of PKR in complex with eIF2alpha. The structures reveal that eIF2alpha binds to the C-terminal catalytic lobe while catalytic-domain dimerization is mediated by the N-terminal lobe. In addition to inducing a local unfolding of the Ser51 acceptor site in eIF2alpha, its mode of binding to PKR affords the Ser51 site full access to the catalytic cleft of PKR. The generality and implications of the structural mechanisms uncovered for PKR to the larger family of four human eIF2alpha protein kinases are discussed.  相似文献   

12.
13.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

14.
Phosphorylation of serine 51 residue on the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) inhibits the guanine nucleotide exchange (GNE) activity of eIF2B, presumably, by forming a tight complex with eIF2B. Inhibition of the GNE activity of eIF2B leads to impairment in eIF2 recycling and protein synthesis. We have partially purified the wild-type (wt) and mutants of eIF2alpha in which the serine 51 residue was replaced with alanine (51A mutant) or aspartic acid (51D mutant) in the baculovirus system. Analysis of these mutants has provided novel insight into the role of 51 serine in the interaction between eIF2 and eIF2B. Neither mutant was phosphorylated in vitro. Both mutants decreased eIF2alpha phosphorylation occurring in hemin and poly(IC)-treated reticulocyte lysates due to the activation of double-stranded RNA-dependent protein kinase (PKR). However, addition of 51D, but not 51A mutant eIF2alpha protein promoted inhibition of the GNE activity of eIF2B in hemin-supplemented rabbit reticulocyte lysates in which relatively little or no endogenous eIF2alpha phosphorylation occurred. The 51D mutant enhanced the inhibition in GNE activity of eIF2B that occurred in hemin and poly(IC)-treated reticulocyte lysates where PKR is active. Our results show that the increased interaction between eIF2 and eIF2B protein, occurring in reticulocyte lysates due to increased eIF2alpha phosphorylation, is decreased significantly by the addition of mutant 51A protein but not 51D. Consistent with the idea that mutant 51D protein behaves like a phosphorylated eIF2alpha, addition of this partially purified recombinant subunit, but not 51A or wt eIF2alpha, increases the interaction between eIF2 and 2B proteins in actively translating hemin-supplemented lysates. These findings support the idea that phosphorylation of the serine 51 residue in eIF2alpha promotes complex formation between eIF2alpha(P) and eIF2B and thereby inhibits the GNE activity of eIF2B.  相似文献   

15.
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.  相似文献   

16.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

17.
The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha.  相似文献   

18.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

19.
In response to different cellular stresses, a family of protein kinases phosphorylates eIF2alpha (alpha subunit of eukaryotic initiation factor-2), contributing to regulation of both general and genespecific translation proposed to alleviate cellular injury or alternatively induce apoptosis. Recently, we reported eIF2alpha(P) (phosphorylated eIF2alpha) in the brain during SE (status epilepticus) induced by pilocarpine in mice, an animal model of TLE (temporal lobe epilepsy) [Carnevalli, Pereira, Longo, Jaqueta, Avedissian, Mello and Castilho (2004) Neurosci. Lett. 357, 191-194]. We show in the present study that one eIF2alpha kinase family member, PKR (double-stranded-RNA-dependent protein kinase), is activated in the cortex and hippocampus at 30 min of SE, reflecting the levels of eIF2alpha(P) in these areas. In PKR-deficient animals subjected to SE, eIF2alpha phosphorylation was clearly evident coincident with activation of a secondary eIF2alpha kinase, PEK/PERK (pancreatic eIF2alpha kinase/RNA-dependent-protein-kinase-like endoplasmic reticulum kinase), denoting a compensatory mechanism between the two kinases. The extent of eIF2alpha phosphorylation correlated with the inhibition of protein synthesis in the brain, as determined from polysome profiles. We also found that C57BL/6 mice, which enter SE upon pilocarpine administration but are more resistant to seizure-induced neuronal degeneration, showed very low levels of eIF2alpha(P) and no inhibition of protein synthesis during SE. These results taken together suggest that PKR-mediated phosphorylation of eIF2alpha contributes to inhibition of protein synthesis in the brain during SE and that sustained high levels of eIF2alpha phosphorylation may facilitate ensuing cell death in the most affected areas of the brain in TLE.  相似文献   

20.
Gil J  Esteban M  Roth D 《Biochemistry》2000,39(25):7521-7530
The regulation of protein synthesis is a critical component in the maintenance of cellular homeostasis. A major mechanism of translational control in response to diverse abiotic and biotic stress signals involves the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). The pathway has been demonstrated in all eukaryotes except plants, although components of a putative plant pathway have been characterized. To evaluate the in vivo capability of plant eIF2alpha to participate in the translation pathway, we have used vaccinia virus recombinants that constitutively express wheat eIF2alpha and inducibly express the eIF2alpha dsRNA-stimulated protein kinase, PKR, in BSC-40 cells. Activation of PKR in cells expressing wild-type wheat eIF2alpha resulted in an inhibition of cellular and viral protein synthesis and an induction of cellular apoptosis correlating with phosphorylation of eIF2alpha on serine 51. Expression of a nonphosphorylatable mutant (51A) of plant eIF2alpha reversed the PKR-mediated translational block as well as the PKR-induced apoptosis. A direct interaction of the plant proteins with the mammalian translational initiation apparatus is supported by coimmunoprecipitation of wild-type plant eIF2alpha and the 51A mutant with mammalian eIF2gamma and the localization of the plant proteins in ribosome fractions. These findings suggest that plant eIF2alpha is capable of interacting with the guanine nucleotide exchange factor eIF2B within the context of the eIF2 holoenzyme and provide direct evidence for its ability to participate in phosphorylation-mediated translational control in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号