首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fumonisin B1 (FB1) and Alternaria alternate f. sp. lycopersici (AAL)‐toxin are classified as sphinganine analog mycotoxins (SAMTs), which induce programmed cell death (PCD) in plants and pose health threat to humans who consume the contaminated crop products. Herein, Fumonisin B1 Resistant41 (FBR41), a dominant mutant allele, was identified by map‐based cloning of Arabidopsis FB1‐resistant mutant fbr41, then ectopically expressed in AAL‐toxin sensitive tomato (Solanum lycopersicum) cultivar. FBR41‐overexpressing tomato plants exhibited less severe cell death phenotype upon AAL‐toxin treatment. Analysis of free sphingoid bases showed that both fbr41 and FBR41‐overexpressing tomato plants accumulated less sphinganine and phytosphingosine upon FB1 and AAL‐toxin treatment, respectively. Alternaria stem canker is a disease caused by AAL and responsible for severe economic losses in tomato production, and FBR41‐overexpressing tomato plants exhibited enhanced resistance to AAL with decreased fungal biomass and less cell death, which was accompanied by attenuated accumulation of free sphingoid bases and jasmonate (JA). Taken together, our results indicate that FBR41 is potential in inhibiting SAMT‐induced PCD and controlling Alternaria stem canker in tomato.  相似文献   

2.
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2‐5, which harbours a T‐DNA insertion in the 18th exon of the importin beta‐like gene, SAD2. The H2O2‐induced increase in the [Ca2+]cyt of the sad2‐5 mutant was greater than that of the wild type, and the sad2‐5 mutant showed clear cell death phenotypes and abnormal H2O2 accumulation under fumonisin‐B1 (FB1) treatment. CaCl2 could enhance the FB1‐induced cell death of the sad2‐5 mutant, whereas lanthanum chloride (LaCl3), a broad‐spectrum calcium channel blocker, could restore the FB1‐induced PCD phenotype of sad2‐5. The sad2‐5 fbr11‐1 double mutant exhibited the same FB1‐insensitive phenotype as fbr11‐1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium‐ and ROS‐mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.  相似文献   

3.
Long chain bases (LCBs) are sphingolipid intermediates acting as second messengers in programmed cell death (PCD) in plants. Most of the molecular and cellular features of this signaling function remain unknown. We induced PCD conditions in Arabidopsis thaliana seedlings and analyzed LCB accumulation kinetics, cell ultrastructure and phenotypes in serine palmitoyltransferase (spt), mitogen-activated protein kinase (mpk), mitogen-activated protein phosphatase (mkp1) and lcb-hydroxylase (sbh) mutants. The lcb2a-1 mutant was unable to mount an effective PCD in response to fumonisin B1 (FB1), revealing that the LCB2a gene is essential for the induction of PCD. The accumulation kinetics of LCBs in wild-type (WT) and lcb2a-1 plants and reconstitution experiments with sphinganine indicated that this LCB was primarily responsible for PCD elicitation. The resistance of the null mpk6 mutant to manifest PCD on FB1 and sphinganine addition and the failure to show resistance on pathogen infection and MPK6 activation by FB1 and LCBs indicated that MPK6 mediates PCD downstream of LCBs. This work describes MPK6 as a novel transducer in the pathway leading to LCB-induced PCD in Arabidopsis, and reveals that sphinganine and the LCB2a gene are required in a PCD process that operates as one of the more effective strategies used as defense against pathogens in plants.  相似文献   

4.
He Q  Bhandari N  Sharma RP 《Life sciences》2002,71(17):2015-2023
Fumonisin B(1) (FB(1)), produced by Fusarium verticillioides, is a common contaminant in foods and feeds. Increase in tissue free sphingoid bases resulting from the inhibition of ceramide synthase is a biomarker of fumonisin exposure. Tumor necrosis factor alpha (TNFalpha) is induced in liver in response to FB(1) treatment. This study determined whether fumonisin B(1) caused increases in free sphingoid bases and altered the expression of TNFalpha in heart and lung, organs that are not targets of FB(1) toxicity, of male and female mice treated with 5-daily subcutaneous injection of 2.25 mg/kg FB(1). A significant increase in free sphingoid bases was observed in both heart and lung of FB(1)-exposed mice. The magnitude of increases in free sphingoid bases in both organs of female mice was much higher than that in males. The expression of TNFalpha was increased by FB(1) treatment in the lung of male mice and in the heart of female mice, whereas the expression of interferon gamma was unaltered. Results suggest that both sphingolipid accumulation and TNFalpha induction are observed in the tissues of mice that are not associated with FB(1) toxicity.  相似文献   

5.
Previous studies have shown that tumor necrosis factor alpha (TNFalpha) is involved in the pathogenic events following exposure to fumonisin B(1) (FB(1)), a potent inhibitor of ceramide synthase and sphingolipid biosynthesis. The intimate role of sphingolipid mediators in TNFalpha signaling and cellular death suggests that FB(1) may alter the sensitivity of cells to TNFalpha-induced apoptosis. We tested the hypothesis that FB(1) treatment will increase the sensitivity of porcine renal epithelial cells to TNFalpha. Porcine renal epithelial cells (LLC-PK(1)) were treated with FB(1) for 48 h prior to treatment with TNFalpha. A dose-dependent increase in TNFalpha-induced apoptosis was observed in cells pretreated with FB(1). Cells treated with FB(1) showed increased DNA fragmentation and terminal uridine nucleotide end labeling in response to TNFalpha treatment. FB(1) increased DNA synthesis and resulted in cell cycle arrest in the G(2)/M phase of the cell cycle. Flow cytometric analysis of the cell cycle indicated that TNFalpha predominantly killed cells in the G(2)/M phase. The activation of JNK, a mitogen-activated protein kinase (MAPK), was increased following 48 h exposure to FB(1). Phosphorylation of p38 and ERK remained unchanged following treatment with FB(1). FB(1) also increased free sphingoid base levels under identical treatment conditions. Results suggest that FB(1) increased free sphingoid base levels and the population of cells in the G(2)/M phase. This population was shown to be most susceptible to TNFalpha-induced apoptosis. Phosphorylation of pro-apoptotic JNK may play an important role in these effects.  相似文献   

6.
Teng C  Dong H  Shi L  Deng Y  Mu J  Zhang J  Yang X  Zuo J 《Plant physiology》2008,146(3):1322-1332
Sphingolipids are important signaling molecules involved in various cellular activities. De novo sphingolipid synthesis is initiated by a rate-limiting enzyme, serine palmitoyltransferase (SPT), a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. A mutation in the Arabidopsis thaliana LCB1 gene, lcb1-1, was found to cause embryo lethality. However, the underpinning molecular and cellular mechanisms remain largely unclear. Here, we report the identification of the fumonisin B(1) resistant11-2 (fbr11-2) mutant, an allele of lcb1-1. The fbr11-2 mutation, most likely an allele stronger than lcb1-1, was transmitted only through female gametophytes and caused the formation of abortive microspores. During the second pollen mitosis, fbr11-2 initiated apoptotic cell death in binucleated microspores characteristic of nuclear DNA fragmentation, followed by cytoplasm shrinkage and organelle degeneration at the trinucleated stage. In addition, a double mutant with T-DNA insertions in two homologous LCB2 genes showed a phenotype similar to fbr11-2. Consistent with these observations, the FBR11/LCB1 expression was confined in microspores during microgametogenesis. These results suggest that SPT-modulated programmed cell death plays an important role in the regulation of male gametophyte development.  相似文献   

7.
Sphingolipid metabolites function as signaling molecules in mammalian cells, influencing cell proliferation, migration, and death. Recently, sphingolipid signaling has been implicated in the regulation of developmental processes in Drosophila melanogaster. However, biochemical analysis of endogenous Drosophila sphingoid bases has not been reported. In this study, a rapid HPLC-based method was developed for the analysis of free sphingoid bases endogenous to Drosophila. Four molecular species of endogenous free sphingoid bases were observed in adult flies and identified as C14 and C16 sphingosine (Sph) and C14 and C16 dihydrosphingosine (DHS). The C14 molecular species were the most prevalent, accounting for approximately 94% of the total free sphingoid bases in adult wild-type flies. An Sph kinase (SK) mutant demonstrated significant accumulation of all four sphingoid bases, whereas a serine palmitoyltransferase mutant demonstrated low but detectable levels. When endogenous sphingoid bases were evaluated at different stages of development, the observed ratio of Sph to DHS increased significantly from early embryo to adulthood. Throughout development, this ratio was significantly lower in the SK mutant as compared with the wild-type. This is the first report describing analysis of free C14 and C16 sphingoid bases from Drosophila. The biochemical characterization of these lipids from mutant models of sphingolipid metabolism should greatly facilitate the analysis of the biological significance of these signaling molecules.  相似文献   

8.
Sphingosine-1-phosphate is a sphingolipid metabolite involved in the regulation of cell proliferation in mammalian cells. The major route of sphingosine-1-phosphate degradation is through cleavage at the C2–3bond by sphingosine phosphate lyase. The recent identification of the first dihydrosphingosine/sphingosine phosphate lyase gene inSaccharomyces cerevisiaeestablishes that phosphorylated sphingoid base metabolism is conserved throughout evolution. Thedpl1Δ deletion mutant, which accumulates endogenous phosphorylated sphingoid bases, exhibits unregulated proliferation upon approach to stationary phase. The increased proliferation rate during respiratory growth was associated with failure to appropriately recruit cells into the G1phase of the cell cycle. Several genes were found to be overexpressed or prematurely expressed during nutrient deprivation in thedpl1Δ strain, including glucose-repressible genes and G1cyclins. These studies implicate a role forDPL1and phosphorylated sphingoid bases in the regulation of global responses to nutrient deprivation in yeast.  相似文献   

9.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   

10.
Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Delta4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein alpha-subunit gene, GPA1.  相似文献   

11.
Sphingosine 1-phosphate lyase (S1P lyase) irreversibly cleaves sphingosine 1-phosphate (S1P) in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphate are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. Indeed, we have previously reported that S1P lyase deficiency causes neurodegeneration and other adverse symptoms. We next asked the question whether and how S1P lyase deficiency affects the metabolism of (glyco)sphingolipids and cholesterol, two lipid classes that might be involved in the neurodegenerative processes observed in S1P lyase-deficient mice. As predicted, there was a considerable increase in free and phosphorylated sphingoid bases upon elimination of S1P lyase, but to our surprise, rather than increasing, the mass of (glyco)sphingolipids persisted at wild type levels. This was discovered to be due to reduced de novo sphingoid base biosynthesis and a corresponding increase in the recycling of the backbones via the salvage pathway. There was also a considerable increase in cholesterol esters, although free cholesterol persisted at wild type levels, which might be secondary to the shifts in sphingolipid metabolism. All in all, these findings show that accumulation of free and phosphorylated sphingoid bases by loss of S1P lyase causes an interesting readjustment of the balance between de novo biosynthesis and recycling to maintain (glyco)sphingolipid homeostasis. These changes, and their impact on the metabolism of other cellular lipids, should be explored as possible contributors to the neurodegeneration in S1P lyase deficiency.  相似文献   

12.
13.
Stone JM  Heard JE  Asai T  Ausubel FM 《The Plant cell》2000,12(10):1811-1822
Fumonisin B1 (FB1), a programmed cell death-eliciting toxin produced by the necrotrophic fungal plant pathogen Fusarium moniliforme, was used to simulate pathogen infection in Arabidopsis. Plants infiltrated with 10 microM FB1 and seedlings transferred to agar media containing 1 microM FB1 develop lesions reminiscent of the hypersensitive response, including generation of reactive oxygen intermediates, deposition of phenolic compounds and callose, accumulation of phytoalexin, and expression of pathogenesis-related (PR) genes. Arabidopsis FB1-resistant (fbr) mutants were selected directly by sowing seeds on agar containing 1 microM FB1, on which wild-type seedlings fail to develop. Two mutants chosen for further analyses, fbr1 and fbr2, had altered PR gene expression in response to FB1. fbr1 and fbr2 do not exhibit differential resistance to the avirulent bacterial pathogen Pseudomonas syringae pv maculicola (ES4326) expressing the avirulence gene avrRpt2 but do display enhanced resistance to a virulent isogenic strain that lacks the avirulence gene. Our results demonstrate the utility of FB1 for high-throughput isolation of Arabidopsis defense-related mutants and suggest that pathogen-elicited programmed cell death of host cells may be an important feature of compatible plant-pathogen interactions.  相似文献   

14.
The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1‐induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1‐induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col‐0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase β‐thioglucoside glucohydrolase (TGG)‐deficient double mutant tgg1 tgg2, rather than atypical myrosinase‐deficient mutant pen2‐2, is more sensitive to FB1 than Col‐0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG‐dependent IGS hydrolysis is involved in FB1‐induced PCD. Indole‐3‐acetonitrile (IAN) and indole‐3‐carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS‐scavenging ability. Despite the involvement of indole‐3‐acetic acid (IAA) in restricting FB1‐induced PCD, feeding of IAN and I3C attenuated FB1‐induced PCD in the IAA receptor mutant tir1‐1 just as in Col‐0. Taken together, our results indicate that TGG‐catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA‐independent way.  相似文献   

15.
Programmed cell death (PCD) is a common process in eukaryotes during development and in response to pathogens and stress signals. Bax inihibitor-1 (BI-1) is proposed to be a cell death suppressor that is conserved in both animals and plants, but the physiological importance of BI-1 and the impact of its loss of function in plants are still unclear. In this study, we identified and characterized two independent Arabidopsis mutants with a T-DNA insertion in the AtBI1 gene. The phenotype of atbi1-1 and atbi1-2, with a C-terminal missense mutation and a gene knockout, respectively, was indistinguishable from wild-type plants under normal growth conditions. However, these two mutants exhibit accelerated progression of cell death upon infiltration of leaf tissues with a PCD-inducing fungal toxin fumonisin B1 (FB1) and increased sensitivity to heat shock-induced cell death. Under these conditions, expression of AtBI1 mRNA was up-regulated in wild-type leaves prior to the activation of cell death, suggesting that increase of AtBI1 expression is important for basal suppression of cell death progression. Over-expression of AtBI1 transgene in the two homozygous mutant backgrounds rescued the accelerated cell death phenotypes. Together, our results provide direct genetic evidence for a role of BI-1 as an attenuator for cell death progression triggered by both biotic and abiotic types of cell death signals in Arabidopsis.  相似文献   

16.
The sphingoid long chain bases (LCBs) and their phosphorylated derivatives (LCB-Ps) are important signaling molecules in eukaryotic organisms. The cellular levels of LCB-Ps are tightly controlled by the coordinated action of the LCB kinase activity responsible for their synthesis and the LCB-P phosphatase and lyase activities responsible for their catabolism. Although recent studies have implicated LCB-Ps as regulatory molecules in plants, in comparison with yeast and mammals, much less is known about their metabolism and function in plants. To investigate the functions of LCB-Ps in plants, we have undertaken the identification and characterization of Arabidopsis genes that encode the enzymes of LCB-P metabolism. In this study the Arabidopsis At1g27980 gene was shown to encode the only detectable LCB-P lyase activity in Arabidopsis. The LCB-P lyase activity was characterized, and mutant plant lines lacking the lyase were generated and analyzed. Whereas in other organisms loss of LCB-P lyase activity is associated with accumulation of high levels of LCB/LCB-Ps and developmental abnormalities, the sphingolipid profiles of the mutant plants were remarkably similar to those of wild-type plants, and no developmental abnormalities were observed. Thus, these studies indicate that the lyase plays a minor role in maintenance of sphingolipid metabolism during normal plant development and growth. However, a clear role for the lyase was revealed upon perturbation of sphingolipid synthesis by treatment with the inhibitor of ceramide synthase, fumonisin B(1).  相似文献   

17.
The internalization step of endocytosis in yeast requires actin and sterols for maximum efficiency. In addition, many receptors and plasma membrane proteins must be phosphorylated and ubiquitylated prior to internalization. The Saccharomyces cerevisiae end8-1 mutant is allelic to lcb1, a mutant defective in the first step of sphingoid base synthesis. Upon arrest of sphingoid base synthesis a rapid block in endocytosis is seen. This block can be overcome by exogenous sphingoid base. Under conditions where endogenous sphingosine base synthesis was blocked and exogenous sphingoid bases could not be converted to phosphorylated sphingoid bases or to ceramide, sphingoid bases could still suppress the endocytic defect. Therefore, the required lipid is most likely a sphingoid base. Interestingly, sphingoid base synthesis is required for proper actin organization, but is not required for receptor phosphorylation. This is the first case of a physiological role for sphingoid base synthesis, other than as a precursor for ceramide or phosphorylated sphingoid base synthesis.  相似文献   

18.
Fumonisins (FB) and AAL-toxin are sphingoid-like compounds produced by several species of fungi associated with plant diseases. In animal cells, both fumonisins produced by Fusarium moniliforme and AAL-toxin produced by Alternaria alternata f. sp. lycopersici inhibit ceramide synthesis, an early biochemical event in the animal diseases associated with consumption of F. moniliforme-contaminated corn. In duckweed (Lemna pausicostata Heglem. 6746), tomato plants (Lycopersicon esculentum Mill), and tobacco callus (Nicotiana tabacum cv Wisconsin), pure FB1 or AAL-toxin caused a marked elevation of phytosphingosine and sphinganine, sphingoid bases normally present in low concentrations. The relative increases were quite different in the three plant systems. Nonetheless, disruption of sphingolipid metabolism was clearly a common feature in plants exposed to FB1 or AAL-toxin. Resistant varieties of tomato (Asc/Asc) were much less sensitive to toxin-induced increases in free sphinganine. Because free sphingoid bases are precursors to plant "ceramides," their accumulation suggests that the primary biochemical lesion is inhibition of de novo ceramide synthesis and reacylation of free sphingoid bases. Thus, in plants the disease symptoms associated with A. alternata and F. moniliforme infection may be due to disruption of sphingolipid metabolism.  相似文献   

19.
We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.  相似文献   

20.
The recent findings of sphingolipids as potential mediators of yeast heat stress responses led us to investigate their possible role in the heat-induced cell cycle arrest and subsequent recovery. The sphingolipid-deficient yeast strain 7R4 was found to lack the cell cycle arrest seen in the isogenic wild type. Furthermore, strain lcb1-100, which harbors a temperature-sensitive serine palmitoyltransferase, lacked increased de novo generated sphingoid bases upon heat stress. Importantly, this strain was found to lack the transient heat-induced G0/G1 arrest. These results indicate a role for sphingolipids and specifically those generated in the de novo pathway in the cell cycle arrest response to heat. To determine the bioactive sphingolipid regulating this response, an analysis of key mutants in the sphingolipid biosynthetic and degradation pathways was performed. Strains deleted in sphingoid base kinases, sphingoid phosphate phosphatase, lyase, or dihydrosphingosine hydroxylase were found to display the cell cycle arrest. Also, the knockout of a fatty acyl elongation enzyme, which severely attenuates ceramide production, displayed the arrest. These experiments suggested that the active species for cell cycle arrest were the sphingoid bases. In further support of these findings, exogenous phytosphingosine (10 microM) was found to induce transient arrest. Stearylamine did not induce an arrest, demonstrating chemical specificity, and L-erythro- was not as potent as D-erythro-dihydrosphingosine showing stereospecificity. To investigate a possible arrest mechanism, we studied the hyperstable Cln3 (Cln3-1) strain LDW6A that has been previously shown to be resistant to heat stress-induced cell cycle arrest. The strain containing Cln3-1 was found to be resistant to cell cycle arrest induced by exogenous phytosphingosine, indicating that Cln3 acts downstream of the sphingoid bases in this response. Interestingly, cell cycle recovery from the transient arrest was found to be dependent upon the sphingoid base kinases (LCB4, LCB5). Overall, this combination of genetic and pharmacologic results demonstrates a role for de novo sphingoid base biosynthesis by serine palmitoyltransferase in the transient G0/G1 arrest mediated through Cln3 via a novel mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号