首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30440篇
  免费   2844篇
  国内免费   2797篇
  2024年   17篇
  2023年   392篇
  2022年   517篇
  2021年   1529篇
  2020年   1234篇
  2019年   1442篇
  2018年   1357篇
  2017年   977篇
  2016年   1332篇
  2015年   2002篇
  2014年   2324篇
  2013年   2529篇
  2012年   2944篇
  2011年   2676篇
  2010年   1618篇
  2009年   1483篇
  2008年   1627篇
  2007年   1413篇
  2006年   1339篇
  2005年   1051篇
  2004年   909篇
  2003年   821篇
  2002年   676篇
  2001年   533篇
  2000年   469篇
  1999年   456篇
  1998年   313篇
  1997年   262篇
  1996年   257篇
  1995年   220篇
  1994年   210篇
  1993年   151篇
  1992年   189篇
  1991年   155篇
  1990年   123篇
  1989年   111篇
  1988年   78篇
  1987年   69篇
  1986年   49篇
  1985年   45篇
  1984年   50篇
  1983年   17篇
  1982年   24篇
  1981年   17篇
  1980年   6篇
  1979年   10篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
By integrating next‐generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double‐membrane‐bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot‐associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21–24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.  相似文献   
2.
Septins are a highly conserved family of GTP‐binding proteins that contribute to many cellular and metabolic functions, including cell polarity, cytokinesis, cell morphogenesis and pathogenesis. In this study, we characterized the septins FaCdc3 and FaCdc12 in the filamentous fungus Fusarium asiaticum. The functions of FaCdc3 and FaCdc12 were evaluated by constructing deletion mutants of FaCdc3 and FaCdc12, designated ΔFaCdc3‐5 and ΔFaCdc12‐71, respectively. The deletion mutants exhibited a reduced rate of mycelial growth, increased aerial hyphae formation, irregularly shaped hyphae, reduced conidiation and a lack of sexual reproduction in wheat kernels. Histochemical analysis revealed that the conidia and hyphae of ΔFaCdc3‐5 and ΔFaCdc12‐71 formed large lipid droplets (LDs). ΔFaCdc3‐5 and ΔFaCdc12‐71 also exhibited increased resistance to agents that induce osmotic stress and damage the cell membrane and cell wall. In addition, the hyphae and conidia of the two mutants formed fewer septa than those of the wild‐type and exhibited aberrant nuclear distribution. Pathogenicity assays showed that ΔFaCdc3‐5 and ΔFaCdc12‐71 exhibited reduced virulence on wheat spikelets, which was indirectly correlated with a reduced level of deoxynivalenol accumulation. All of these defects were restored by genetic complementation of the two mutants with the parental FaCdc3 and FaCdc12. These results indicate that FaCdc3 and FaCdc12 play a critical role in various cellular processes in F. asiaticum.  相似文献   
3.
4.
5.
6.
To study the involvement of the cytoskeletal system in the fusion of animal cells, we examined the dynamic changes of cytoskeletal proteins during the various stages of cell fusion. CV-1 cells were fused by applying a radio-frequency electrical pulse. Structural changes of microtubules (MTs) and F-actin were monitored simultaneously by double-label fluorescence microscopy. It was observed that in a few minutes after the initiation of cell fusion, MT bundles began to extend into the cytoplasmic bridges which were formed by fusing the membranes of neighboring cells. Later, a network of parallel MT bundles appeared between the adjacent nuclei of the fusing cells; such MT bundles may provide the mechanical links that are responsible for nuclear aggregation. The structural changes of F-actin during cell fusion were more complicated. We observed many different patterns of actin distribution in the fusing cells, including some giant, ring-shaped structures. Reorganization of actin is unlikely to be involved in the nuclear aggregation process. Instead, actin bundles condensed at the cell edges may help to widen the cytoplasmic bridges to allow merging of cellular contents between the fusing cells.  相似文献   
7.
李文卿  江源  赵守栋  张凌楠  刘锬 《生态学报》2017,37(10):3365-3374
研究利用在六盘山地区采集的油松树轮样芯建立树轮宽度标准年表(STD),分别与不同长度时间单元(月、半月、旬)和多时间尺度的标准化降水指数(SPIn)序列进行相关性分析。油松标准年表与不同长度时间单元SPI的相关结果显示,较小的时间单元会使相关性表达更加精确,而时间单元过小则会因为数据波动性增大而导致相关关系弱化。因此,相较于月和旬,半月是相关性分析更为合适的时间单元长度。油松标准年表与多时间尺度SPI的相关结果显示,SPI多时间尺度的特性有助于揭示油松径向生长对不同时间尺度水分状况的响应特征,且油松在不同生长时期对于不同时间尺度水分状况具有相异的响应机制。在温度较低(0℃)的冬季,短时间内的降水并不利于树木生长,而长时间良好的水分储备会为树木生长季需水提供保障;在生长季前期,长时间良好的水分状况比短期内的降水更有利于树木的生长;在生长季,补给性水分和土壤水分都对树木生长起着至关重要的作用。  相似文献   
8.
9.
MLK-3 kinase is a widely expressed serine/ threonine kinase that bears multiple protein interaction domains and regulates signals mediated by the stress-responsive pathway. Thus, MLK-3 signaling affects numerous cellular processes, raising the possibility that MLK-3 might play a role in oncogenesis. In this report, we describe the fine mapping of the MLK-3 gene within the 11q13.1 chromosomal region. By integrating data from somatic cell hybrids and double color fluorescence in situ hybridization on metaphase chromosomes and DNA fibers, MLK-3 has been assigned approximately 1 Mb telomeric of PYGM, close to the D11S546 locus. Since the MEN1 susceptibility locus is also located within the 11q13.1 region, we have carried out Southern and Northern blot analyses, as well as protein truncation assays to establish whether abnormalities in MLK-3 lead to the development of this familial cancer syndrome. Our observations exclude MLK-3 as the MEN1 gene. Received: 25 September 1996 / Revised: 16 December 1996  相似文献   
10.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号