首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We collected pearly razorfish, Xyrichtys novacula (Labridae), from a sandy bottom of Capo dOrlando (Tyrrhenian Sea) to study their feeding habits. We caught fish by hand-lines and seine nets and identified, counted and weighed food items in their stomachs. We evaluated the importance of the different prey types by calculating the frequency of occurrence, abundance and mass. We used these values to calculate the index of relative importance (IRI) for each taxonomic category and a modified index (MI) which did not incorporate %N into the formula. Gammarideans were dominant food items in terms of %F but showed a very low MI value; the bivalve Acanthocardia tubercolata was the dominant species in terms of %W and MI value. The prey items were mostly benthic organisms belonging to the assemblage of fine, well-sorted sands showing that X. novacula is a benthic feeder. Despite the large number of prey taxa found, few species accounted for most of the prey consumed, indicating specialist feeding, as confirmed by the low value of the Levins standardised index. We found significant differences in prey distribution among size classes, with the highest prey diversity recorded in 120–140 mm TL size classes. Correspondence analysis showed a trend of increasing predator size classes among prey items, with small prey, such as copepods and amphipods, in the smallest predator size classes and bigger prey in the larger ones. Prey caught by larger predators differed significantly in weight from those taken by smaller specimens. There was a significant positive correlation of fish length with bivalves, decapods and echinoids, and a negative one with copepods, ostracods, caprellids, gammarideans. There were no significant differences between males and females of overlapping sizes. Juveniles are able to exploit only small, vulnerable prey, while adults take few, large prey, thereby avoiding competition with juveniles.  相似文献   

2.
The diel feeding periodicity, daily ration and prey selection of juvenile chinook salmon, Oncorhynchus tshawytscha , were studied in relation to the available prey. Maximum dry weight of food intake occurred about dawn, when mayflies were the major prey, but the greatest number of freshly eaten prey occurred during the afternoon, when chironomids and terrestrial dipterans predominated. Feeding activity at night was low, with smaller mayflies comprising up to 50% of the prey. During the day the young salmon fed selectively on chironomids and the larger mayflies, while trichopterans and terrestrial taxa were under-represented in the diet. Food consumption over the 24-h period averaged 8.3% of the fish dry body weight. Prey abundance in the drift explained about 50% of the composition of the diet. Although the fish selected larger mayflies, size apparently was not a main criterion for selection because chironomids, although smaller than mayflies, were also frequently eaten. Previous dietary experience of the fish and the diel pattern of prey abundance appear to best explain the selective feeding of juvenile chinook salmon.  相似文献   

3.
We examined regional and latitudinal variation in fecundity and egg weight for five species of Pacific salmon ( Oncorhynchus ) along the Pacific coast of North America. Data were examined for 24 chum salmon, 15 pink salmon, 34 sockeye salmon, 44 chinook salmon, and 40 coho salmon populations from published sources, unpublished Canadian hatchery records, our own laboratory investigations, and other unpublished sources. Substantial regional variation in fecundity and egg weight was observed, with salmon on the Queen Charlotte Islands and Vancouver Island in British Columbia generally having lower fecundity and larger egg size than nearby mainland populations. The relative distance of freshwater migration to the spawning grounds generally had a marked effect on both fecundity and egg size, with populations spawning in the upper portions in the drainages of large rivers like the Fraser River in British Columbia having reduced fecundity and egg size compared with coastal spawning populations. Fecundity was generally higher and egg size generally lower in more northern populations of sockeye, chinook, and coho salmon compared with southern ones. We suggest that egg size tends to be lower in northern populations of some species as a result of increased fecundity due to their older ages at maturity and a limited amount of energy that can be expended on egg production.  相似文献   

4.
Host species and salinity often affect the development of disease in aquatic species. Eighty chinook salmon Oncorhynchus tshawytscha, 80 coho salmon O. kisutch and 80 rainbow trout O. mykiss were infected with Loma salmonae. Forty of each species were reared in seawater and 40 in freshwater. The mean number of xenomas per gill filament was 8 to 33 times greater in chinook salmon than in rainbow trout (RBT). Coho salmon had a mean xenoma intensity intermediate to that of chinook salmon and RBT. In contrast to the differences between species, salinity had no significant effect on xenoma intensity in any of these host species. The onset of xenoma formation occurred at Week 5 postexposure (PE) for chinook salmon and RBT, and at Week 6 PE for coho salmon. RBT had cleared all visible branchial xenomas by Week 9 PE, whereas xenomas persisted in coho and chinook salmon at Week 9 PE. Histologically, xenomas were visible in the filament arteries of the branchial arch in chinook and coho salmon gills but were absent from RBT gills. Fewer xenomas were seen in the central venous sinusoids of RBT than in chinook and coho salmon. The lower xenoma intensity, shorter duration of infection and pathological characteristics, common to microsporidial gill disease in RBT, suggest a degree of resistance to clinical disease that is not seen in coho and chinook salmon.  相似文献   

5.
SYNOPSIS. The myxosporidan Myxidium minteri was found in 3 recognized hosts, chinook and coho salmon and rainbow trout and 2 new hosts, cutthroat trout and mountain whitefish. Spores in all species examined were found primarily in the gall bladder. Fish infected with this parasite were obtained from both Oregon coastal rivers and Columbia River basin locations. In general the prevalence of infection was higher in the fish in coastal rivers.  相似文献   

6.
Juvenile walleye pollock, Theragra chalcogramma, is the dominant forage fish on the continental shelf of the Gulf of Alaska, yet little is known about the feeding habits of this important interval of pollock life history. The taxonomic composition and size of prey found in the stomachs of age-0 juveniles collected at three nearshore locations in the Gulf of Alaska in September 1990 were compared to the composition and size of zooplankton collected in concurrent plankton tows. The maximum length of prey consumed increased dramatically over the length range of pollock examined (58–110 mm) from approximately 7 mm to 30 mm, due mainly to the consumption of large euphausiids and chaetognaths by the bigger individuals. The maximum width of prey changed little over this size range although there was a general increase in prey width with increasing predator size. The minimum prey length and width did not change with increasing fish size. Juvenile pollock generally selected the larger prey sizes relative to what was available. Juvenile pollock showed a marked preference for adult euphausiids and decapod larvae and an avoidance of copepods and chaetognaths relative to the numbers collected in net tows. These results are discussed relative to the feeding ecology of these juvenile fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
1. We investigated the numerical response, functional response and prey preference of Asplanchna sieboldi to five different prey brachionids. We also analysed the feeding behaviour of the predator in terms of encounters, attacks, capture and prey ingested per unit time. 2. The five prey species (Brachionus havanaensis, B. rubens, B. patulus, B. macracanthus and B. calyciflorus) differed in their body size and spine length. 3. The population growth rates of A. sieboldi ranged from 0.074 ± 0.03 to 0.431 ± 0.02 depending on prey type and density. There was a significant impact of the spine length rather than body size per se on the population growth rates of the predator. 4. The maximum number of prey consumed depended on both body size and spine length. In the functional response analyses, the plateau was reached at a prey density of 4–8 ind. mL?1. 5. There was a significant impact of prey density on the prey preference of the predator.  相似文献   

8.
The diet and predator‐prey size relationships of mandarin fish Siniperca chuatsi (Basilewsky) in Lake Xiaosihai along the middle reach of the Yangtze River were studied through stomach content analysis. A total of 401 specimens (91–539 mm total length) were collected in 2007. The diet was dominated by topmouth gudgeon Pseudorasbora parva, sharpbelly Hemiculter leucisculus, redfin culter Cultrichthys erythropterus, and crucian carp Carassius auratus, with significant seasonal and ontogenetic differences. Ontogenetic variation in diet was apparent that larger prey items such as crucian carp and redfin culter became more common, while smaller prey such as topmouth gudgeon, bitterlings and shrimps gradually declined in the larger fish. Mandarin fish total length (TL) was strongly related to mouth gape width (GW) and gape height (GH). Mandarin fish TL and prey fish TL as well as mandarin fish GW and prey fish body depth (BD) were positively and linearly related for sharpbelly, redfin culter and crucian carp. Strong size selectivity for topmouth gudgeon, sharpbelly and redfin culter as prey indicated that the piscivorous mandarin fish can have potential impact on the population size structure of the three prey fish.  相似文献   

9.
  1. Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking.
  2. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times.
  3. Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium–large prey types. Attack rates for both predators peaked unimodally at intermediate predator–prey body mass ratios, while handling times generally shortened across increasing body mass ratios.
  4. We thus demonstrate effects of body size ratios on predator–prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator–prey participants.
  5. Considerations for intra‐ and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
  相似文献   

10.
Synopsis During their seaward migration, juvenile salmonids encounter structural and visual cover which varies between and within watersheds. In this study, the effects of two types of cover (turbidity and artificial vegetation) on the predation mortality of juvenile salmonids exposed to fish piscivores was investigated in outdoor concrete ponds. During experiments, adult coastal cutthroat trout, Oncorhynchus clarkii clarkii, were allowed to feed on juvenile salmonid prey — chinook salmon, O. tshawytscha, chum salmon, O. keta, sockeye salmon, O. nerka, and cutthroat trout — in separate trials. Daily instantaneous per capita predation rate was determined for each turbidity and vegetation treatment, within each trial. Mean predation rates varied between 1% and 76% daily. In the presence of cover, mean daily predation rates were 10–75% lower than those in controls (no vegetation and clear water), depending on prey species. Predation rates were significantly lower in the presence of vegetation cover and did not covary with prey size or species. The effects of turbidity were generally not significant and were not additive with the effects of vegetation. However, turbidity appeared to significantly reduce the effectiveness of vegetation as cover for juvenile chinook and sockeye salmon. We suggest that these two forms of cover do not affect risk of predation by fish piscivores to juvenile salmonids via the same mechanism.  相似文献   

11.
Over evolutionary time, predator-prey interactions have shaped and constrained functional and behavioral traits of piscivorous fishes. The endangered Colorado Pikeminnow Ptychocheilus lucius, a large endemic piscivore of the Colorado River Basin, encounters a substantially altered prey base that differs in behaviors and morphologies compared to the historical suite of native prey. To assess physical limitations of Colorado Pikeminnow predation, we conducted a feeding experiment with two species of nonnative prey (spined and despined Channel Catfish Ictalurus punctatus and Red Shiner Cyprinella lutrensis) and quantified scaling of cranial morphology in this predator. In our predation experiments, Colorado Pikeminnow (215–312 mm total length) consumed both spined and despined Channel Catfish as well as Red Shiner but only consumed prey less than 20% of the predator’s total length. Previous feeding trials using smaller Colorado Pikeminnow, with native and nonnative prey species, indicated they consumed prey up to 35% of their total length, suggesting relative prey size limits may decrease as this predator grows. Morphological measurements also suggested relative prey size suitability may decrease as Colorado Pikeminnow become larger, with head depth and width demonstrating isometric scaling at small sizes and shifting to negative allometry as fish get larger. Together, these data suggest an ontogenetic shift in the head morphology of Colorado Pikeminnow may decrease the relative size of prey available to these predators. In severely altered systems, understanding trophic characteristics that limit overall predator resource availability will be critical for conservation of piscivorous fishes.  相似文献   

12.
Effects of temperature and meal size on gastric evacuation rates of juvenile coho salmon, Oncorhynchus kisutch , consuming sockeye salmon, O. nerka , fry were examined and used in the estimation of daily meal, daily ration and number of fry consumed by coho in Chignik Lake, Alaska. Evacuation of fry by coho was best described by a negative exponential model (average R2 = 0.93). A square root model also provided a good fit (average R2 = 0·93), but the y-intercepts deviated more from the expected value than did the y-intercepts of the exponential model. The effect of temperature ( T , 5–13° C) and meal size (MS, 0·166–0·367 g) on the exponential evacuation rate (re, h-1) could be described as
In the lake, coho fed continuously during the 24-h period in early June 1986 and 1987. Estimates of daily meal and ration of coho calculated by the Eggers method and the geometric mean of prey weight ranged from 0·224 to 0·435 g (2.1–4.4% body wt) depending on location and year. The Elliott & Persson method provided similar estimates of food consumption, whereas estimates based on the Pennington method and square root evacuation of prey differed from the exponential models. Sockeye fry represented 93% of the total prey weight. The average number of sockeye fry consumed per coho per 24 h, based on the arithmetic mean of prey weight, was 3·0–3·9 fry.  相似文献   

13.
As part of a comprehensive genetic evaluation of reproduction in naturally spawning coho salmon, Oncorhynchus kisutch, we examined morphometric variation in captively reared and wild adults from Hood Canal, Washington (U.S.A.) for evidence of differentiation between these groups. We collected captively reared fish as parr from two stocks and reared to adulthood at a freshwater hatchery, maturing in 1995 and 1996; we sampled closely size-matched wild fish as they returned to a neighboring stream in both years. Multivariate analysis of shape variation by Procrustes coordinates, visualized by thin-plate splines, indicated that the captively reared adults were differentiated from the wild fish by sharply reduced sexual dimorphism as well as smaller heads and less hooked snouts, increased trunk depth, larger caudal peduncles, shorter dorsal fins, larger hindbodies and a reduction in body streamlining. The differences between the captively reared and wild fish were similar to but more pronounced than some differences previously reported between hatchery and wild coho salmon. The magnitude and pattern of differences suggested that at least some of them were environmentally induced. Shape variation showed an allometric relationship with variation in body (measured as centroid) size. Morphometric variation was a poor correlate of most spawning behaviors. Nevertheless, our results suggest that the morphometric consequences of captive rearing for mate selection and reproductive activity of spawning fish may limit its effectiveness as a restorative tool.  相似文献   

14.
We used a laboratory behaviour assay to investigate how innate predator recognition, handling stress, retention time, and number of conditioning events might affect chemically mediated anti-predator conditioning for hatchery-reared chinook salmon, Oncorhynchus tshawytscha. Juvenile chinook salmon with no prior exposure to predatory stimuli exhibited innate fright responses to northern pikeminnow, Ptychocheilis oregonensis, odour, regardless of whether the salmon came from a population that exists in sympatry or allopatry with northern pikeminnows. Juvenile chinook salmon exhibited enhanced predator recognition following a single conditioning event with conspecific extract and northern pikeminnow odour. Handling similar to what hatchery salmon might experience prior to release did not substantially reduce the conditioned response. When we conditioned juvenile chinook salmon in hatchery rearing vessels, fish from tanks treated once exhibited a conditioned response to northern pikeminnow odour in aquaria, but only for one behaviour (feeding response), and fish treated twice did not respond. The results suggest that enhanced recognition of predator stimuli occurs quickly, but may be to some extent context-specific, which may limit conditioned fright responses after release into the natural environment.  相似文献   

15.
Using juvenile coho salmon, Oncorhynchus kisutch, we tested predictions arising from dynamic optimization models of foraging under predation risk. Coho juveniles from two size groups raised in the laboratory were individually fed varying food rations. Their willingness to risk predation was measured as the time to resume foraging after presentation of a predator model. Small fish (mean weight 1.5 g) resumed feeding earlier than larger fish (3.5 g) as predicted by dynamic models under summer photoperiod but not under autumn photoperiod. Contrary to predictions, larger fish did not increase risk taking and small fish decreased risk taking between summer and autumn treatments. Food ration significantly influenced time to resume feeding only in small coho. A simple mechanistic model we proposed to explain feeding motivation under risk as a function of body size and prior growth rate was not sufficient to explain observed variation in risk taking. This study suggests that coho salmon use photoperiod and their own body size as cues for long-term, state-dependent adjustments of feeding behaviour. The lower risk taking of larger fish is probably an example of asset protection, whereby larger animals accept less predation risk to protect their greater accumulated fitness value. The decrease of risk taking in small fish in the autumn was possibly caused by a switch of life history trajectory towards delayed smolting. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

16.
This study provides a comprehensive assessment of the dietary composition of the ambush predator Neosebastes pandus and compares the diets of 49 species from 39 studies of three benthic predatory families in the Scorpaeniformes: Scorpaenidae (20 species), Triglidae (19 species) and Platycephalidae (10 species). A total of 275 N. pandus were collected from the west (Rottnest Island) and south (Esperance) coasts of south‐western Australia and the percentage frequency and volumetric contribution of the stomach contents identified. Fish from the west coast consumed a greater mean number of broad taxonomic groups and were more diverse in their diet than fish from the south coast. Cephalopods, brachyurans and teleosts were the largest overall contributors to diet, with teleosts being more important to diets of west‐coast fish and polychaetes for south‐coast fish. This reflects differences in habitat between the two locations. Dietary composition also changed with increasing body size, reflecting morphological changes that allow bigger fish to capture and ingest larger, more mobile prey. Meta‐analysis of the diets of 49 species of scorpaenid, triglid and platycephalid revealed that they feed predominantly on teleosts and large crustaceans. Significant differences in diet were detected among families, with platycephalids being the most distinct and feeding more on teleosts than scorpaenids and triglids.  相似文献   

17.
Salmon fish of the Salmonidae family, representatives of the Pacific salmon Oncorhynchus genus, the humpback salmon O. gorbuscha Wielb., dog salmon O. keta, coho salmon O. kisutch, blueback salmon O. nerka, and chinook salmon O. tschawytscha, and also of noble salmons genus, Salmo—black salmon S. salar, caught in the northwest water area of the Pacific ocean, are studied in the work. Iodides of acetyl-, propionyl-, and butyrylthiocholine were used as substrates. Carbamate proserine and 5 organophosphorus inhibitors were studied as inhibitors. Testing of homogeneity of cholinesterase activity in the brain tissue has revealed only one enzyme in the coho salmon, while several enzymes, in the dog salmon and humpback salmon, which can be an enzymologic argument for the favor of hypothesis about the presence of interspecies groups among Pacific salmons of the Oncorhynchus genus. Interspecies differences in substrate specificity of the brain tissue in the studied salmonid species are found. The fish enzymes of the fishes have shown a high sensitivity to proserine. Only in the case of diisopropylfluorophosphate, both interspecies and intergenus differences are revealed.  相似文献   

18.
Synopsis Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.  相似文献   

19.
Examination of the diet of Lates calcarifer , based on 3684 specimens of 4–1200 mm total length (T.L.), from two localities in north Australia showed it is an opportunistic predator with an ontogenetic progression in its diet from microcrustacea to macrocrustacea to fish. The increasing importance of fish in the diet of L. calcarifer in salt water (up to 87% of food consumed) involved a dietary shift from feeding on bottom-dwelling forms to pelagic forms. There were few differences in the diet of L. calcarifer between the two localities. Cannibalism was rarely encountered in the Gulf of Carpentaria although it was significant (11–4% of the diet of L. calcarifer of 1001–1200 mm T.L.) in Van Diemen Gulf. A significant correlation between predator and prey length was found for Ariidae, Dorosomidae, Engraulidae, L. calcarifer , Mugilidae and Polynemidae. The maximum prey/predator length ratio observed was 0–61 for the dorosomid, Nematolosa erebi.  相似文献   

20.
The composition of the diet of the Indo-Pacific cornetfish Fistularia commersonii from the SE Aegean Sea is described. The stomach contents of 245 specimens collected between September 2004 and March 2005 were examined. Dietary comparisons were made reflecting the relationship between diet composition, time of year, and fish size. Correlation between predator length and prey length was significant. The diet of the blue cornetfish consists of 96% by number and 99.95% by weight of fish. Size classification and habitat of prey groups (benthic, supra-benthic, and pelagic) showed that with increased body length the blue cornetfish extended its diet to larger prey and more generalist feeding. Spicara smaris, Boops boops, and Mullidae spp. were the most abundant prey by weight whereas a variety of small benthic fish (especially gobiids) and newly hatched fish constituted the largest number of prey items. Length–weight relationships for the cornetfish were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号