首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A transgene, pHRD, is highly methylated in 12 independent mouse lines when in a C57BL/6 strain background, but becomes progressively less methylated when bred into a DBA/2 background. Transgenes inherited from the mother are generally more methylated; however, this parental effect disappears following continued breeding into the nonmethylating strain. Mapping experiments using BXD recombinant inbred mice as well as other inbred strains indicate that a single strain-specific modifier (Ssm-1) linked to, but distinct from, Fv-1 is responsible for the strain effect. In addition to the methylated and unmethylated transgenic phenotypes, certain mice exhibit a partial methylation pattern that is a consequence of an unusual cellular mosaicism. The pHRD transgene, containing target sequences for the V(D)J recombinase, undergoes site-specific recombination only in lymphoid tissues. This V-J joining is restricted primarily to unmethylated transgene copies.  相似文献   

2.
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo.  相似文献   

3.
High efficiencies of recombination between LoxP elements were initially recorded when the Cre recombinase was expressed in meiotic spermatocytes. However, it was unexpectedly found that LoxP recombination fell to very low values at the second generation of mice expressing Cre during meiosis. The inability of the LoxP elements to serve as recombination substrates was correlated with cytosine methylation, initially in LoxP and transgene sequences, but later extending for distances of at least several kilobases into chromosomal sequences. It also affected the allelic locus, implying a transfer of structural information between alleles similar to the transvection phenomenon described in Drosophila. Once initiated following Cre-LoxP interaction, neither cis-extension nor transvection of the methylated state required the continuous expression of Cre, as they occurred both in germinal and somatic cells and in the fraction of the offspring that had not inherited the Sycp1-Cre transgene. Therefore, these processes depend on a physiological mechanism of establishment and extension of an epigenetic state, for which they provide an experimental model.  相似文献   

4.
5.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

6.
W H Mark  K Signorelli  M Blum  L Kwee  E Lacy 《Genomics》1992,13(1):159-166
In line 4 transgenic mice, six to eight copies of a 50-kb lambda recombinant clone are arranged in a head-to-tail tandem array on chromosome 3. Embryos homozygous for the transgene become arrested in their development on Day 5 of gestation shortly after implantation. The insertion site was cloned using a small segment of the transgene as a probe. Comparison of the insertion site with the wildtype locus indicates that a 22-kb deletion of host DNA has occurred in line 4 mice. Restriction enzyme analyses showed that neither the tandem array nor the flanking chromosomal DNA had any detectable rearrangements. Sequencing of the junctions between host and foreign DNA, however, revealed insertions of small fragments of DNA of unknown origin as well as an insertion of a DNA segment derived from another region of the transgene. Therefore, disruption of an essential gene in the line 4 transgenic mouse may have been caused by the insertion of 300-400 kb of foreign DNA or a deletion of sequences in the host genome.  相似文献   

7.
8.
9.
10.
Transgenic mice carrying bovine satellite DNA IV were obtained. The size of the transgene integrated into the mouse genome was approximately 390 kb (about 100 transgene copies) as determined by a semiquantitative PCR. Restriction analysis with isoschizomeric restrictases HpaII and MspI, showed that the alien DNA was methylated. In the genome of a transgenic founder male, two integration sites for satellite DNA IV were revealed by in situ hybridization and in situ PCR. These sites are situated on two different chromosomes: in pericentromeric heterochromatin and within a chromosomal arm. In transgenic mice, de novo formation of heterochromatin regions (C-block and the CMA3 disk within the centromeric heterochromatin of another chromosome) was revealed by C-banding and staining with chromomycin A3. This formation is not characteristic of mice, because their chromosomes normally contain no interstitial C-blocks or sequences intensely stained by chromomycin A3.  相似文献   

11.
The majority of the mammalian genome is thought to be relatively stable throughout and between generations. There are no developmentally programmed gene amplifications as seen in lower eukaryotes and prokaryotes, however a number of unscheduled gene amplifications have been documented. Apart from expansion of trinucleotide repeats and minisatellite DNA, which involve small DNA elements, other cases of gene or DNA amplifications in mammalian systems have been reported in tumor samples or permanent cell lines. The mechanisms underlying these amplifications remain unknown. Here, we report a spontaneous transgene amplification through the male germline which resulted in silencing of transgene expression. During routine screening one mouse, phenotypically negative for transgene expression, was found to have a transgene copy number much greater than that of the transgenic parent. Analysis of the transgene expansion revealed that the amplification in the new high copy transgenic line resulted in a copy number approximately 40-60 times the primary transgenic line copy number of 5-8 copies per haploid genome. Genetic breeding analysis suggested that this amplification was the result of insertion at only one integration site, that it was stable for at least two generations and that the site of insertion was different from the site at which the original 5-8 copy array had integrated. FISH analysis revealed that the new high copy array was on chromosome 7 F3/4 whereas the original low copy transgene array had been localised to chromosome 3E3. DNA methylation analysis revealed that the high copy transgene array was heavily methylated. The amplification of transgenes, although a rare event, may give insight into amplification of endogenous genes which can be associated with human disease.  相似文献   

12.
The characterization of the insertion sites of exogenous sequences in transgenic mice can identify loci that are potentially useful for the genetic analysis of the mammalian genome. We have found that the transgene insertion site in the transgenic line TG.EB is tightly linked with the Steel (Sl) locus on mouse chromosome 10. In a backcross between doubly heterozygous transgenic Sl (Tg.EB +/+ Sl) mice and wild-type mice, only one recombinant was found in 135 progeny (recombination percentage = 0.7 +/- 0.7). The recombination frequency of the transgene with marker loci known to flank Sl was consistent with a map position close to Sl. Genomic sequences that are adjacent to the transgene insertion site were cloned and found to be tightly linked with the Sl locus in interspecific crosses using nontransgenic mice. Recombination analysis utilizing the transgene insertion site locus was used to show that a recently identified hematopoietic growth factor is encoded at Sl. The cloned sequences from the transgene insertion site are polymorphic in inbred strains of mice and can be utilized to determine the genotype at Sl during early embryonic development. Further, they may be useful in characterizing the genomic region near Sl that is affected in Sl deletion mutants.  相似文献   

13.
The concept of using animal mammary glands asbioreactors to produce recombinant pharmaceuticalproteins has been widely accepted for great potentialcommercial interests [1]. Up to now, the main method tomake transgenic animals is microinjection [2,3]. Lowlevel and unpredictability of the foreign gene expressionwere found among transgenic lines. The major reason isthat the microinjected foreign gene is integrated into thegenome randomly as a stretch of multiple copies, and thesurrounding chromat…  相似文献   

14.
It is demonstrated that a heterologous (chicken) CpG island containing five Sp1 canonical recognition sequences becomes highly methylated in the genome of transgenic mice bearing one or several copies of the transgene. Similar levels of methylation of the chicken CpG island were observed in different tissues of transgenic mice except the brain where the level of methylation of this chicken CpG-rich fragment was significantly lower than in other tissues. Analysis of susceptibility of the "transgenic" CpG island to Hpa II and Msp I restriction nucleases revealed an unusual methylation pattern interfering with the action of both of these enzymes. A conclusion has been drawn that heterologous CpG island per se does not contain all necessary signals permitting to maintain its own non-methylated status in the genome of transgenic animals.  相似文献   

15.
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.  相似文献   

16.
Landmark features of imprinted genes are differentially methylated domains (DMDs), in which one parental allele is methylated on CpG dinucleotides and the opposite allele is unmethylated. Genetic experiments in the mouse have shown that DMDs are required for the parent-specific expression of linked clusters of imprinted genes. To understand the mechanism whereby the differential methylation is established and maintained, we analyzed a series of transgenes containing DMD sequences and showed that imperfect tandem repeats from DMDs associated with the Snurf/Snrpn, Kcnq1, and Igf2r gene clusters govern transgene imprinting. For the Igf2r DMD the minimal imprinting signal is two unit copies of the tandem repeat. This imprinted transgene behaves identically to endogenous imprinted genes in Dnmt1o and Dnmt3L mutant mouse backgrounds. The primary function of the imprinting signal within the transgene DMD is to maintain, during embryogenesis and a critical period of genomic reprogramming, parent-specific DNA methylation states established in the germ line. This work advances our understanding of the imprinting mechanism by defining a genomic signal that dependably perpetuates an epigenetic state during postzygotic development.  相似文献   

17.
E E Max  J G Seidman  H Miller  P Leder 《Cell》1980,21(3):793-799
Analysis of amino acid and nucleotide sequences of kappa immunoglobulin chains and their genes has led to the hypothesis that the exact site of V-J joining in these genes varies and that this variation is partially responsible for generating amino acid diversity at the recombination site. To assess this hypothesis we have cloned and determined the sequence of one of the two V-J recombinant genes carried by the plasmacytoma MOPC173 and the V region germline precursor of this gene. We find that this V region has been joined to a J segment at a crossover point that indeed differs from the one previously described. This recombination has occurred in such a way as to produce an out of phase, missense reading frame and, hence, a cryptic light chain gene. This result directly supports the cross-over-point variation hypothesis but also indicates that the flexibility of this reaction is accompanied by a cost to the organism in terms of the generation of missense genes.  相似文献   

18.
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (~50%), but at a much lower frequency during vegetative growth (~0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ~90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling.  相似文献   

19.
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.  相似文献   

20.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号