首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ssm1 is responsible for the mouse strain-specific DNA methylation of the transgene HRD. In adult mice of the C57BL/6 (B6) strain, the transgene is methylated at essentially all CpGs. However, when the transgene is bred into the DBA/2 (D2) strain, it is almost completely unmethylated. Strain-specific methylation arises during differentiation of embryonic stem (ES) cells. Here we show that Ssm1 causes striking chromatin changes during the development of the early embryo in both strains. In undifferentiated ES cells of both strains, the transgene is in a chromatin state between active and inactive. These states are still observed 1 week after beginning ES cell differentiation. However, 4 weeks after initiating differentiation, in B6, the transgene has become heterochromatic, and in D2, the transgene has become euchromatic. HRD is always expressed in D2, but in B6, it is expressed only in early embryos. The transgene is already more methylated in B6 ES cells than in D2 ES cells and becomes increasingly methylated during development in B6, until essentially all CpGs in the critical guanosine phosphoribosyl transferase core are methylated. Clearly, DNA methylation of HRD precedes chromatin compaction and loss of expression, suggesting that the B6 form of Ssm1 interacts with DNA to cause strain-specific methylation that ultimately results in inactive chromatin.  相似文献   

2.
We have previously described a line of transgenic mice with multiple head-to-tail copies of an artificial V-J recombination substrate and have shown that the methylation of this transgene is under the control of a dominant strain-specific modifier gene, Ssm-1. When the transgene array is highly methylated, no recombination is detectable, but when it is unmethylated, V-J joining is seen in the spleen, bone marrow, lymph nodes, and Peyer's patches but not in the thymus or nonlymphoid tissues, including brain tissue. Strikingly, in mice with partially methylated transgene arrays, rearrangement preferentially occurs in hypomethylated copies. Therefore, V-J recombination is negatively correlated with methylated DNA sequences. In addition, it appears that recombination occurs randomly between any two recombination signal sequences within the transgene array. This lack of target preference in an unselectable array of identical targets rules out simple mechanisms of one-dimensional tracking of a V(D)J recombinase complex.  相似文献   

3.
Phenotypic variation in a genetically identical population of mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
The parental alleles of an imprinted gene acquire their distinctive methylation patterns at different times in development. For the imprinted RSVIgmyc transgene, methylation of the maternal allele is established in the oocyte and invariably transmitted to the embryo. In contrast, the methylation of the paternal allele originates during embryogenesis. Here, we show that the paternal methylation pattern among mice with identical genetic backgrounds is subject to extensive variation. In addition to this nongenetic variation, the process underlying RSVIgmyc methylation in the embryo is also subject to considerable genetic regulation. The paternal transgene allele is highly methylated in an inbred C57BL/6J strain, whereas it is relatively undermethylated in an inbred FVB/N strain. Individual methylation patterns of paternal alleles, and therefore all of the variation (nongenetic and genetic) in methylation patterns within an RSVIgmyc transgenic line, are established in early embryogenesis. For each mouse, the paternal RSVIgmyc allele is unmethylated at the day-3.5 blastocyst stage, and the final, adult methylation pattern is found no later than day 8.5 of embryogenesis. Because of the strong relationship between RSVIgmyc methylation and expression, the variation in methylation is also manifest as variation in transgene expression. These results identify embryonic de novo methylation as an important source of both genetic and nongenetic contributions to phenotypic variation and, as such, further our understanding of the developmental origin of imprinted genes.  相似文献   

4.
5.
Imprinting centers (IC) can be defined as cis-elements that are recognized in the germ line and are epigenetically modified to bring about the full imprinting program in a somatic cell. Two paternally expressed human genes, HYMAI and PLAGL1 (LOT1/ZAC), are located within human chromosome 6q24. Within this region lies a 1-kb CpG island that is differentially methylated in somatic cells, unmethylated in sperm, and methylated in mature oocytes in mice, characteristic features of an IC. Loss of methylation of the homologous region in humans is observed in patients with transient neonatal diabetes mellitus and hypermethylation is associated with a variety of cancers, suggesting that this region regulates the expression of one or more key genes in this region involved in these diseases. We now report that a transgene carrying the human HYMAI/PLAGL1 DMR was methylated in the correct parent-origin-specific manner in mice and this was sufficient to confer imprinted expression from the transgene. Therefore, we propose that this DMR functions as the IC for the HYMAI/PLAGL1 domain.  相似文献   

6.
The chloramphenicol acetyltransferase gene under the control of the late E2A promoter of adenovirus type 2 (Ad2) was introduced as transgene into the B6D2F1 mouse strain with mixed genetic background and became extensively de novo methylated. The methylation of this pAd2E2AL-CAT (7-1A) transgene was regulated in a strain-specific manner apparently depending on the site of integration. Transmission of the 7-1A transgene into an inbred DBA/2, 129/sv, or FVB/N genetic background led to a significant loss of methylation in the transgene, whereas C57BL/6, CB20, and Balb/c backgrounds favored the de novo methylation in very specific patterns. The newly established patterns of de novo methylation were transmitted to the offspring and remained stable for many generations, regardless of the heterozygosity of strain-specific DNA sequences present in these mouse strains. Segregation analyses showed a non-mendelian transmission of methylation phenotypes and suggested the involvement of dominant modifiers of methylation. The genotype-specific modifications of the transgene were followed for 11 backcross generations. These observations reflect an evolutionarily conserved mechanism directed against foreign, e.g. viral or bacterial, DNA at least in the chromosomal location of the 7-1A transgene. In seven additional mouse lines carrying the same transgene in different chromosomal locations, strain-specific alterations of methylation patterns were not observed.  相似文献   

7.
The maintenance of methylation-free islands in transgenic mice.   总被引:14,自引:1,他引:13       下载免费PDF全文
The Thy-1 gene is expressed in a tissue- and stage-specific pattern and has a typical 1.6kb methylation-free island (MFI) covering about 600bp upstream and downstream of the two alternative first exons. By microinjection of a mouse Thy-1.1/human Thy-1 gene into fertilized eggs, we were able to show that the MFI is restored in the transgenic mice. The flanking sequence became methylated, but the MFI remains unmethylated in all tissues of transgenic mice at different developmental stages tested, irrespective of the site of expression of the gene. There is one exception, in extra-embryonal tissues of 14.5 day embryos a small percentage of the islands were methylated. We conclude that maintenance of the MFI is regulated by cis-acting sequences present within the gene, and indicates that the unmethylated state of the islands is consistent with a necessary but not sufficient condition for expression of the gene.  相似文献   

8.
The effect of the presence or absence of methyl groups on the N6 atoms of two adjacent adenosines near the 3' end of 16 S rTNA of Escherichia coli on initiation of protein biosynthesis has been studied using wild type (methylated) and kasugamycin-resistant (unmethylated) E. coli ribosomes (see preceding paper (Poldermans, B., Goosen, N., and Van Knippenberg, P. H. (1979) J. Biol. Chem. 254, 9085--9089)). Conditions of pH, temperature, and ionic strength at which binding of fMet-tRNA to ribosomes proceeds maximally are the same for wild type and mutant ribosomes. Mg2+- and factor-dependent dissociation of ribosomes as well as the association of the subunits is also the same for methylated and unmethylated ribosomes. Binding of fMet-tRNA to wild type and to mutant 70 S ribosomes requires the same amount of the three initiation factors. However, optimal fMet-tRNA binding to unmethylated 30 S ribosomes needs more of initiation factor 3 than does binding to methylated 30 S ribosomes, provided that initiation factor 1 is absent. This difference is completely abolished when mutant 30 S ribosomes are methylated using purified methylase from the wild type strain and the methyl donor S-adenosylmethionine.  相似文献   

9.
10.
Quantitative dot hybridization was used to estimate the rDNA copy number in brain tissues of five inbred mouse strains (AKR/JY, NZB/B1OrlY, CBA/CaLacY, 101/HY, and 129/JY), which were obtained from the collection of the Research Center of Biomedical Technologies (Y). In each strain, 9-12 mice aged 1-2 months were examined. The rDNA copy number per diploid genome in strains AKR (range 105-181, mean +/- SD 136 +/- 27) and NZB (129-169, 148 +/- 12) was significantly lower than in strains CBA (172-267, 209 +/- 31), 101 (179-270, 217 +/- 30), and 129 (215-310, 264 +/- 33). Mice of strain NZB were relatively homogeneous in this trait (CV = 8.1%). Strains AKR, CBA, 101, and 129 displayed significant between-group differences, CV varying from 12.5 to 19.9%. The same DNA specimens were digested with MspI or HpaII and used to estimate the extent of methylation of the 28S rDNA region. Regardless of the strain, all mice could be classed into two groups. One group (20 mice) had a methylated fraction accounting for less than 8% of rDNA and included all nine mice of strain NZB, seven out of nine mice of strain 101, and three out of ten mice of strain 129. In the other group (29 mice), the methylated fraction varied from 18 to 38%. A possible role of methylation and the genome dosage of ribosomal genes in phenotypic variation (quantitative trait variation) of inbred mouse strains is discussed.  相似文献   

11.
《Epigenetics》2013,8(2):94-100
Differential denaturation during PCR can be used to selectively amplify unmethylated DNA from a methylated DNA background. The use of differential denaturation in PCR is particularly suited to amplification of undermethylated sequences following treatment with bisulphite, since bisulphite selectively converts cytosines to uracil while methylated cytosines remain unreactive. Thus amplicons derived from unmethylated DNA retain less cytosines and their lower G + C content allows for their amplification at the lower melting temperatures, while limiting amplification of the corresponding methylated amplicons (Bisulphite Differential Denaturation PCR, BDD-PCR). Selective amplification of unmethylated DNA of four human genomic regions from three genes, GSTP1, BRCA1 and MAGE-A1, is demonstrated with selectivity observed at a ratio of down to one unmethylated molecule in 105 methylated molecules. BDD-PCR has the potential to be used to selectively amplify and detect aberrantly demethylated genes, such as oncogenes, in cancers. Additionally BDD-PCR can be effectively utilised in improving the specificity of methylation specific PCR (MSP) by limiting amplification of DNA that is not fully converted, thus preventing misinterpretation of the methylation versus non-conversion.   相似文献   

12.
13.
Mouse embryonic stem (ES) cells are derived from the inner cell mass of blastocyst stage embryos and are used primarily for the creation of genetically engineered strains through gene targeting. While some inbred strains of mice are permissive to the derivation of embryonic stem cell lines and are therefore easily engineered, others are nonpermissive or recalcitrant. Genetic engineering of recalcitrant strain backgrounds requires gene targeting in a permissive background followed by extensive backcrossing of the engineered allele into the desired strain background. The inbred mouse strain DBA/2J is a recalcitrant strain that is used as a model of many human diseases, including glaucoma, deafness and schizophrenia. Here, we describe the generation of germ-line competent ES cell lines derived from DBA/2J mice. We also demonstrate the utility of DBA/2J ES cells with the creation of conditional knockout allele for Endothelin-2 (Edn2) directly on the DBA/2J strain background.  相似文献   

14.
The Morris water maze (MWM) is a commonly used task to assess hippocampal-dependent spatial learning and memory in transgenic mouse models of disease, including neurocognitive disorders such as Alzheimer’s disease. However, the background strain of the mouse model used can have a substantial effect on the observed behavioral phenotype, with some strains exhibiting superior learning ability relative to others. To ensure differences between transgene negative and transgene positive mice can be detected, identification of a training procedure sensitive to the background strain is essential. Failure to tailor the MWM protocol to the background strain of the mouse model may lead to under- or over- training, thereby masking group differences in probe trials. Here, a MWM protocol tailored for use with the F1 FVB/N x 129S6 background is described. This is a frequently used background strain to study the age-dependent effects of mutant P301L tau (rTg(TauP301L)4510 mice) on the memory deficits associated with Alzheimer’s disease. Also described is a strategy to re-optimize, as dictated by the particular testing environment utilized.  相似文献   

15.
Embryonic stem (ES) cell-based gene manipulation is an effective method for the generation of mutant animal models in mice and rats. Availability of germline-competent ES cell lines from inbred rat strains would allow for creation of new genetically modified models in the desired genetic background. Fischer344 (F344) males carrying an enhanced green fluorescence protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. After establishment of ES cell lines, rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing was conducted in selected ES cell lines. One male ES cell line, F344-Tg.EC4011, was further evaluated for germline competence by injection into Dark Agouti (DA) X Sprague Dawley (SD) blastocysts. Resulting chimeric animals were bred with wild-type SD mates and germline transmissibility of the ES cell line was confirmed by identification of pups carrying the ES cell line-derived EGFP transgene. This is the first report of a germline competent F344 ES cell line. The availability of a new germline competent ES cell line with a stable fluorescence reporter from an inbred transgenic rat strain provides an important new resource for genetic manipulations to create new rat models.  相似文献   

16.
In vertebrate genomes the dinucleotide CpG is heavily methylated, except in CpG islands, which are normally unmethylated. It is not clear why the CpG islands are such poor substrates for DNA methyltransferase. Plant genomes display methylation, but otherwise the genomes of plants and animals represent two very divergent evolutionary lines. To gain a further understanding of the resistance of CpG islands to methylation, we introduced a human CpG island from the proteasome-like subunit I gene into the genome of the plant Arabidopsis thaliana. Our results show that prevention of methylation is an intrinsic property of CpG islands, recognized even if a human CpG island is transferred to a plant genome. Two different parts of the human CpG island – the promoter region/ first exon and exon2–4 – both displayed resistance against methylation, but the promoter/ exon1 construct seemed to be most resistant. In contrast, certain sites in a plant CpG-rich region used as a control transgene were always methylated. The frequency of silencing of the adjacent nptII (KmR) gene in the human CpG constructs was lower than observed for the plant CpG-rich region. These results have implications for understanding DNA methylation, and for construction of vectors that will reduce transgene silencing.  相似文献   

17.
Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.  相似文献   

18.
Transgenic mice carrying one complete copy of the human alpha 1(I) collagen gene on the X chromosome (HucII mice) were used to study the effect of X inactivation on transgene expression. By chromosomal in situ hybridization, the transgene was mapped to the D/E region close to the Xce locus, which is the controlling element. Quantitative RNA analyses indicated that transgene expression in homozygous and heterozygous females was about 125% and 62%, respectively, of the level found in hemizygous males. Also, females with Searle's translocation carrying the transgene on the inactive X chromosome (Xi) expressed about 18% transgene RNA when compared to hemizygous males. These results were consistent with the transgene being subject to but partially escaping from X inactivation. Two lines of evidence indicated that the transgene escaped X inactivation or was reactivated in a small subset of cells rather than being expressed at a lower level from the Xi in all cells, (i) None of nine single cell clones carrying the transgene on the Xi transcribed transgene RNA. In these clones the transgene was highly methylated in contrast to clones carrying the transgene on the Xa. (ii) In situ hybridization to RNA of cultured cells revealed that about 3% of uncloned cells with the transgene on the Xi expressed transgene RNA at a level comparable to that on the Xa. Our results indicate that the autosomal human collagen gene integrated on the mouse X chromosome is susceptible to X inactivation. Inactivation is, however, not complete as a subset of cells carrying the transgene on Xi expresses the transgene at a level comparable to that when carried on Xa.  相似文献   

19.
20.
Two inbred strains from a foundation stock derived from Crj: CD-1 (ICR) mice were established after more than 20 generations of full-sib mating, and by simultaneous selective breeding for developing and not developing diabetes after alloxan administration (45 mg/kg in males, 47 mg/kg in females). To elucidate the genetic background of the two inbred strains, i. e., alloxan-induced diabetes-susceptible (ALS) strain and alloxan-induced diabetes-resistant (ALR) strain, their biochemical genetic markers and immunogenetic markers were examined. 1) For both strains, investigation of biochemical genetic markers at 19 loci and immunogenetic markers at 11 loci revealed no variation in any gene within the same strain, showing to be homogeneous, thus indicating establishment of the inbred strains. 2) The two strains differed from each other at 2 loci of biochemical genetic markers and at 5 loci of immunogenetic markers. 3) The ALS and ALR strains can be regarded as new inbred strains derived from ICR mice. 4) The results show that the marker genes of the two strains are different at 7 loci, but it remains unclear whether or not these genes are involved in the difference between the two strains in susceptibility to alloxan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号