首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/ loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE -expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE -expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP -flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/ loxP recombinase-mediated resolution upon floral-dip transformation into CRE -expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.  相似文献   

2.
《Gene》1999,227(1):21-31
The expression of foreign genes in transgenic animals is generally unpredictable as transgenes are integrated at random after pro-nuclear injection into fertilized oocytes. In many cases, transgene expression is inhibited by neighbouring chromatin structures or by the repeated nature of the multiple transgene copies present at the integration site. A strategy involving homologous and site-specific recombination has been devised by which single copies of a foreign gene can be inserted specifically into the locus of a highly expressed gene. As a first step, a loxP recombination target site is introduced by homologous recombination into a predetermined gene locus such that the loxP sequence is placed next to the promoter region and replaces the translational initiation signal. In a subsequent site-specific recombination reaction, a gene of interest can be integrated into the pre-existing loxP site. This biphasic recombination strategy was used to integrate a luciferase reporter gene into the locus of the murine β-casein gene in embryonic stem cells.  相似文献   

3.
Our objective was to test whether or not cyclization recombination (CRE), the P1 phage site-specific recombinase, induces genome rearrangements in plastids. Testing was carried out in tobacco plants in which a DNA sequence, located between two inversely oriented locus of X-over of P1 (loxP) sites, underwent repeated cycles of inversions as a means of monitoring CRE activity. We report here that CRE mediates deletions between loxP sites and plastid DNA sequences in the 3'rps12 gene leader (lox-rps12) or in the psbA promoter core (lox-psbA). We also observed deletions between two directly oriented lox-psbA sites, but not between lox-rps12 sites. Deletion via duplicated rRNA operon promoter (Prrn) sequences was also frequent in CRE-active plants. However, CRE-mediated recombination is probably not directly involved, as no recombination junction between loxP and Prrn could be observed. Tobacco plants carrying deleted genomes as a minor fraction of the plastid genome population were fertile and phenotypically normal, suggesting that the absence of deleted genome segments was compensated by gene expression from wild-type copies. The deleted plastid genomes disappeared in the seed progeny lacking CRE. Observed plastid genome rearrangements are specific to engineered plastid genomes, which contain at least one loxP site or duplicated psbA promoter sequences. The wild-type plastid genome is expected to be stable, even if CRE is present in the plastid.  相似文献   

4.
Designing transformation experiments for either functional genomics or crop improvement requires knowledge of the transgene locus structure, number, transmission and expression resulting from a specific transformation method. We recently reported an improvement to the soybean [Glycine max (L.) Merrill] cotyledonary-node transformation method that resulted in the efficient production of transgenic plants. To characterize the transgene loci resulting from this method, we analysed 270 independent T0 plants and 95 randomly selected T1 progenies for T-DNA locus complexity using Southern analysis. The lines were transformed with Agrobacterium tumefaciens strains LBA4404 or EHA105 carrying the binary plasmids pGPTV, pTOK233, pCAMBIA1303 or pCAMBIA1309, and regenerated in medium supplemented with or without silver nitrate (AgNO3). Analysis in the T0 generation showed that the number of hpt-hybridizing fragments per plant ranged from 1-15, with 31.5% of the lines having a single hpt-hybridizing fragment. Each primary soybean transformant had, on average, 2.0 unlinked transgene loci and that half of the segregating loci in the T1 progenies were single, simple T-DNA insertions. Of the loci containing multiple T-DNA fragments, a low frequency had tandem and inverted repeat T-DNA structures. Integration of binary plasmid backbone sequences occurred in 37% of primary transformants. A. tumefaciens strain, binary plasmid and thiol treatment had no significant effect on transgene locus structure, numbers or expression. Interestingly, exposure of soybean explants to AgNO3 throughout shoot induction and elongation increased T-DNA locus complexity in the primary transformants and decreased silencing of gusA expression in the T1 generation.  相似文献   

5.
In this study the T-DNA composition of four antisense potato transformants showing complete or very strong inhibition of granule-bound starch synthase (GBSS) activity was analysed in detail. By Southern blot hybridizations, it was determined that all four transformants contained T-DNAs on multiple linkage groups and that most linkage groups contained multiple T-DNA copies, often in combination with non-T-DNA vector sequences. Subsequently, fluorescence in situ hybridization was performed on extended DNA fibres (‘fibre-FISH’) of three progeny plants each containing a single linkage group with a complex T-DNA organization. By using two differently labelled probes, one consisting of T-DNA sequences and the other of vector DNA sequences, it was possible to visualize the composition of complex loci. DNA sequences of 5–6 kb were well distinguishable. With this technique it is possible to determine T-DNA copy number, and arrangement of T-DNA and vector DNA sequences in a locus, more accurately than by Southern blot analysis alone. Therefore, fibre-FISH is a valuable supplementary tool to study T-DNA integrations in detail.  相似文献   

6.
To study the influence of genomic context on transgene expression, we have determined the T-DNA structure, flanking DNA sequences, and chromosomal location of four independent transgene loci in tobacco. Two of these loci were stably expressed in the homozygous condition over many generations, whereas the other two loci became unstable after several generations of homozygosity. The stably expressed loci comprised relatively simple T-DNA arrangements that were flanked on at least one side by plant DNA containing AT-rich regions that bind to nuclear matrices in vitro. Of the unstably expressed loci, one consisted of multiple incomplete T-DNA copies, and the second contained a single intact T-DNA; in both cases, however, binary vector sequences were directly contiguous to a right T-DNA border. Fluorescence in situ hybridization demonstrated that the two stably expressed inserts were present in the vicinity of telomeres. The two unstably expressed inserts occupied intercalary and paracentromeric locations, respectively. Results on the stability of transgene expression in F1 progeny obtained by intercrossing the four lines and the sensitivity of the four transgene loci to inactivation in the presence of an unlinked "trans-silencing" locus are also presented. The findings are discussed in the context of repetitive DNA sequences and the allotetraploid nature of the tobacco genome.  相似文献   

7.
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.  相似文献   

8.
9.
The ability of the CRE recombinase to catalyze excision of a DNA fragment flanked by directly repeated lox sites has been exploited to modify gene expression and proved to function well in particular case studies. However, very often variability in CRE expression and differences in efficiency of CRE-mediated recombination are observed. Here, various approaches were investigated to reproducibly obtain optimal CRE activity. CRE recombination was analyzed either by transforming the CRE T-DNA into plants containing a lox-flanked fragment or by transforming a T-DNA harboring a lox-flanked fragment into plants producing the CRE recombinase. Although somatic CRE-mediated excision of a lox-flanked fragment was obtained in all transformants, a variable amount of germline-transmitted deletions was found among different independent transformants, irrespective of the orientation of transformation. Also, the efficiency of CRE-mediated excision correlated well with the CRE mRNA level. In addition, CRE-mediated fragment excision was compared after floral dip and after root tissue transformation when transforming in a CRE-expressing background. Importantly, less CRE activity was needed to excise the lox-flanked fragment from the transferred T-DNA after root tissue transformation than after floral dip transformation. We hypothesize that this is correlated with the lower T-DNA copy number inserted during root transformation as compared to floral dip transformation. Gordana Marjanac and Annelies De Paepe contributed equally to this work.  相似文献   

10.
The concept of using animal mammary glands asbioreactors to produce recombinant pharmaceuticalproteins has been widely accepted for great potentialcommercial interests [1]. Up to now, the main method tomake transgenic animals is microinjection [2,3]. Lowlevel and unpredictability of the foreign gene expressionwere found among transgenic lines. The major reason isthat the microinjected foreign gene is integrated into thegenome randomly as a stretch of multiple copies, and thesurrounding chromat…  相似文献   

11.
Zhang J  Cai L  Cheng J  Mao H  Fan X  Meng Z  Chan KM  Zhang H  Qi J  Ji L  Hong Y 《Transgenic research》2008,17(2):293-306
While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop improvement.  相似文献   

12.
13.
14.
Development of enhancer trap lines for functional analysis of the rice genome   总被引:19,自引:0,他引:19  
Enhancer trapping has provided a powerful strategy for identifying novel genes and regulatory elements. In this study, we adopted an enhancer trap system, consisting of the GAL4/VP16-UAS elements with GUS as the reporter, to generate a trapping population of rice. Currently, 31 443 independent transformants were obtained from two cultivars using Agrobacterium-mediated T-DNA insertion. PCR tests and DNA blot hybridization showed that about 94% of the transformants contained T-DNA insertions. The transformants carried, on average, two copies of the T-DNA, and 42% of the transformants had single-copy insertions. Histochemical assays of approximately 1000 T0 plants revealed various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. The expression pattern of the reporter gene in T1 families corresponded well with the T0 plants and segregated in a 3 : 1 Mendelian ratio in majority of the T1 families tested. The frequency of reporter gene expression in the enhancer trap lines was much higher than that in gene trap lines reported previously. Analysis of flanking sequences of T-DNA insertion sites from about 200 transformants showed that almost all the sequences had homology with the sequences in the rice genome databases. Morphologically conspicuous mutations were observed in about 7.5% of the 2679 T1 families that were field-tested, and segregation in more than one-third of the families fit the 3 : 1 ratio. It was concluded that GAL4/VP16-UAS elements provided a useful system for enhancer trap in rice.  相似文献   

15.
Instability of transgene expression in plants is often associated with complex multicopy patterns of transgene integration at the same locus, as well as position effects due to random integration. Based on maize transposable elements Activator (Ac) and Dissociation (Ds), we developed a method to generate large numbers of transgenic barley (Hordeum vulgare var Golden Promise) plants, each carrying a single transgene copy at different locations. Plants expressing Ac transposase (AcTPase) were crossed with plants containing one or more copies of bar, a selectable herbicide (Basta) resistance gene, located between inverted-repeat Ds ends (Ds-bar). F(1) plants were self-pollinated and the F(2) generation was analyzed to identify plants segregating for transposed Ds-bar elements. Of Ds-bar transpositions, 25% were in unlinked sites that segregated from vector sequences, other Ds-bar copies, and the AcTPase gene, resulting in numerous single-copy Ds-bar plants carrying the transgene at different locations. Transgene expression in F(2) plants with transposed Ds-bar was 100% stable, whereas only 23% of F(2) plants carrying Ds-bar at the original site expressed the transgene product stably. In F(3) and F(4) populations, transgene expression in 81.5% of plants from progeny of F(2) plants with single-copy, transposed Ds-bar remained completely stable. Analysis of the integration site in single-copy plants showed that transposed Ds-bar inserted into single- or low-copy regions of the genome, whereas silenced Ds-bar elements at their original location were inserted into redundant or highly repetitive genomic regions. Methylation of the non-transposed transgene and its promoter, as well as a higher condensation of the chromatin around the original integration site, was associated with plants exhibiting transgene silencing.  相似文献   

16.
We have analysed the application of positive-negative selection for the selection of homologous recombination interactions between the chromosome and a T-DNA molecule after transformation of plant cells. Two different genomic loci in a cell suspension of Arabidopsis thaliana were chosen to study gene targeting events. One was the chalcone synthase (CHS) gene present as a single copy and the second an hemizygous chromosomally inserted T-DNA containing the hpt gene, conferring resistance to hygromycin, flanked by CHS sequences. The target lines were transformed with replacement-type T-DNA vectors which contained a positive selectable marker flanked by the regions of the CHS gene and a negative selectable marker to counter-select random insertions. As negative marker we used the Escherichia coli codA gene encoding cytosine deaminase, conferring upon the cells sensitivity to 5-flourocytosine (5-FC). Doubly selected transformants represent 1–4% of the primary transformed cells. Targeting events were not found at the chalcone synthase locus nor at the artificial hpt locus in a total of 4379 doubly selected calli, corresponding to at least 109475 individual primary transformants. We show by PCR and Southern analysis that the 5-FC resistance in the majority of these cells is associated with substantial deletions of the T-DNA molecule from the right-border end.  相似文献   

17.
Zhao  Yang  Kim  Jae Y.  Karan  Ratna  Jung  Je H.  Pathak  Bhuvan  Williamson  Bruce  Kannan  Baskaran  Wang  Duoduo  Fan  Chunyang  Yu  Wenjin  Dong  Shujie  Srivastava  Vibha  Altpeter  Fredy 《Plant molecular biology》2019,100(3):247-263
Key message

A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination.

Abstract

Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.

  相似文献   

18.
In the standard plant transformation practice, transgene copy number is often inversely correlated with transgene expression. As the integration locus generated by standard methods is mostly complex, consisting of both full-length and partial copies arranged in direct or inverted repeat configurations, it is difficult to parse the effect of copy number and locus structure. To clearly study the effect of transgene copy number on gene expression, it is important to control the locus structure and integrate full-length copies. In this study, the effect of transgene copy number on transgene expression in plant cells was determined using rice callus as a model. To generate full-length integrations, Cre-lox-mediated site-specific gene integration method was used. Transgenic rice lines consisting of one to three copies of β-glucuronidase or green fluorescent protein genes were developed. Site-specific integration lines were characterized and subjected to expression analysis. Lines containing two or three copies of either reporter genes displayed 2–4 times higher expression compared to the single-copy lines. Therefore, dosage-dependent transgene expression can be obtained by integrating full-length copies, and site-specific gene integration approach can serve as an efficient tool for generating precise multi-copy integrations.  相似文献   

19.
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.  相似文献   

20.
Integrative gene transfer is widely used for bioproduction, drug screening, and therapeutic applications but usual viral methods lead to random and multicopy insertions, contribute to unstable transgene expression and can disturb endogenous gene expression. Homologous targeting of an expression cassette using rare‐cutting endonucleases is a potential solution; however the number of studied loci remains limited. Furthermore, the behavior and performance of various types of gene cassettes following gene targeting is poorly defined. Here we have evaluated three loci for gene targeting, including one locus compatible with the proposed Safe Harbor criteria for human translational applications. Using optimized conditions for homologous gene targeting, reporter genes under the control of different promoters were efficiently inserted at each locus in both sense and antisense orientations. Sustainable expression was achieved at all three loci without detectable disturbance of flanking gene expression. However, the promoter, the integration locus and the cassette orientation have a strong impact on transgene expression. Finally, single targeted integrations exhibited greatly improved transgene expression stability versus multicopy or random integration. Taken together, our data suggest a potential set of loci for site‐specific transgene integration, suitable for a variety of biotechnological applications. Biotechnol. Bioeng. 2013; 110: 2225–2235. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号