首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Spectral variants of the green fluorescent protein (GFP) have been extensively used as reporters to image molecular interactions in living cells by fluorescence resonance energy transfer (FRET). However, those GFP variants which are the most efficient donor acceptor pairs for FRET measurements show a high degree of spectral overlap which has hampered in the past their use in FRET applications. Here we use spectral imaging and subsequent un-mixing to quantitatively separate highly overlapping donor and acceptor emissions in FRET measurements. We demonstrate the method in fixed and living cells using a novel GFP based FRET pair (GFP2-YFP (yellow)), which has an increased FRET efficiency compared to the most commonly used FRET pair consisting of cyan fluorescent protein and YFP. Moreover, GFP2 has its excitation maximum at 396 nm at which the YFP acceptor is excited only below the detection level and thus this FRET pair is ideal for applications involving sensitized emission.  相似文献   

2.
We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.  相似文献   

3.
Significant quenching of fluorescence from CdSe/ZnS nanocrystal quantum dots (QDs) coated with mercaptoundecanoic ligands has been realized by copper nanoparticles (NPs). (a) Static quenching in the electrostatic association between the CdSe/ZnS QDs and cetyltrimethylammonium bromide-coated Cu NPs and (b) dynamic quenching of the same nanocrystals by polyvinylpyrrolidone-coated Cu NPs were studied. In both cases, the quenching of fluorescence from the CdSe/ZnS nanocrystals is sensitive to nanomolar concentrations of the copper NPs, and the quenching efficiency increases as spectral overlap between the CdSe/ZnS emission and the copper nanoparticle absorption increases. This suggests that the observed quenching is a result of energy transfer processes. These findings open new avenues for the utilization of Cu NPs in energy transfer-based applications.  相似文献   

4.
Green fluorescent protein and its variants are frequently used as F?rster (fluorescence) resonance energy transfer (FRET) pairs to determine the proximity of protein domains. We prepared fusion proteins comprising yellow fluorescent protein-Dictyostelium myosin II motor domain-cyan fluorescent protein (YFP-myosin-CFP) and compared their FRET properties with an existing construct (GFP-myosin-BFP), containing a green fluorescent protein acceptor and blue fluorescent protein donor [Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. and Sutoh, K. (1998) Nature 396, 380-383]. The latter construct showed an apparent 40% reduction in acceptor fluorescence on ATP addition, when excited via the donor, compared with the YFP-myosin-CFP constructs which showed a small increase (相似文献   

5.

Background

Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.

Methodology

Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.

Conclusions

All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies.  相似文献   

6.
A method for spectral analysis of Förster resonance energy transfer (FRET) signals is presented, taking into consideration both the contributions of unpaired donor and acceptor fluorophores and the influence of incomplete labeling of the interacting partners. It is shown that spectral analysis of intermolecular FRET cannot yield accurate values of the Förster energy transfer efficiency E, unless one of the interactors is in large excess and perfectly labeled. Instead, analysis of donor quenching yields a product of the form Efdpa, where fd is the fraction of donor-type molecules participating in donor-acceptor complexes and pa is the labeling probability of the acceptor. Similarly, analysis of sensitized emission yields a product involving Efa. The analysis of intramolecular FRET (e.g., of tandem constructs) yields the product Epa. We use our method to determine these values for a tandem construct of cyan fluorescent protein and yellow fluorescent protein and compare them with those obtained by standard acceptor photobleaching and fluorescence lifetime measurements. We call the method lux-FRET, since it relies on linear unmixing of spectral components.  相似文献   

7.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

8.
BACKGROUND: The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. METHODS: We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. RESULTS: We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. CONCLUSIONS: We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.  相似文献   

9.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

10.
Förster resonance energy transfer (FRET) measurements based on fluorescence lifetime imaging microscopy (FLIM) are increasingly being used to assess molecular conformations and associations in living systems. Reduction in the excited-state lifetime of the donor fluorophore in the presence of an appropriately positioned acceptor is taken as strong evidence of FRET. Traditionally, cyan fluorescent protein has been widely used as a donor fluorophore in FRET experiments. However, given its photolabile nature, low quantum yield, and multiexponential lifetime, cyan fluorescent protein is far from an ideal donor in FRET imaging. Here, we report the application and use of the TSapphire mutant of green fluorescent protein as an efficient donor to mOrange in FLIM-based FRET imaging in intact plant cells. Using time-correlated single photon counting-FLIM, we show that TSapphire expressed in living plant cells decays with lifetime of 2.93 ± 0.09 ns. Chimerically linked TSapphire and mOrange (with 16-amino acid linker in between) exhibit substantial energy transfer based on the reduction in the lifetime of TSapphire in the presence of the acceptor mOrange. Experiments performed with various genetically and/or biochemically known interacting plant proteins demonstrate the versatility of the FRET-FLIM system presented here in different subcellular compartments tested (cytosol, nucleus, and at plasma membrane). The better spectral overlap with red monomers, higher photostability, and monoexponential lifetime of TSapphire makes it an ideal FRET-FLIM donor to study protein-protein interactions in diverse eukaryotic systems overcoming, in particular, many technical challenges encountered (like autofluorescence of cell walls and fluorescence of pigments associated with photosynthetic apparatus) while studying plant protein dynamics and interactions.Single- and dual-color fluorescence imaging with intrinsically fluorescent proteins is increasingly being used to study the expression, targeting, colocalization, turnover, and associations of diverse proteins involved in different plant signal transduction pathways (for review, see Fricker et al., 2006). Concurrent with the use of fluorescence-based cell biology, Förster resonance energy transfer (FRET) has emerged as a convenient tool to study the dynamics of protein associations in vivo. The technique exploits the biophysical phenomenon of nonradiative energy transfer from a donor fluorophore to an appropriately positioned acceptor at a nanometer scale (1–10 nm; Jares-Erijman and Jovin, 2003). In living cells, FRET occurs when two proteins (or different domains within a single protein) fused to suitable donor and acceptor fluorophores physically interact, thus bringing the donor and the acceptor within the favorable proximity for energy transfer (Immink et al., 2002; Bhat et al., 2006). This results in a decrease in the donor''s fluorescence intensity (or quantum yield [QY]) and excited-state lifetime (Gadella et al., 1999). Furthermore, if the acceptor molecule is a fluorophore, then FRET additionally results in an increase in the acceptor''s emission intensity (sensitized emission; Shah et al., 2001; Bhat et al., 2006).However, the exploitation and use of fluorescent marker proteins to study protein trafficking and associations in plants can be problematic because plant cells contain a number of autofluorescent compounds (e.g. lignin, chlorophyll, phenols, etc.) whose emission spectra interfere with that of the most commonly used green or red fluorescent protein fluorophores and/or their spectral variants. For example, lignin fluorescence in roots, vascular tissues, and cell walls of aerial plant parts interferes with imaging at wavelengths between 490 and 620 nm, whereas the chlorophyll autofluorescence in green aerial plant parts is prevalent between 630 and 770 nm (Chapman et al., 2005). Consequently, conventional imaging of GFP and its closest spectral variants (like cyan fluorescent protein [CFP] and yellow fluorescent protein [YFP]) is most likely to be problematic in roots, whereas red-shifted intrinsic fluorescent proteins (including monomeric red fluorescent protein and recently identified spectral variants like mStrawberry and mCherry) may be hard to discriminate in chloroplast-containing aerial tissues (Chapman et al., 2005). The problems get further compounded in FRET assays because the autofluorescence arising from phenols, lignin, and chlorophyll can limit the choice of fluorophores suitable for in planta FRET assays.CFP and YFP have been widely used as a donor-acceptor pair in in planta FRET measurements (Bhat et al., 2006; Dixit et al., 2006). However, in photophysical terms, this pair is less than ideal for FRET imaging. Both have broad excitation and emission spectra with a small Stokes shift (Chapman et al., 2005). Second, QY of CFP (QY = 0.4) is relatively lower than that of YFP (QY = 0.61), and thus a significantly higher (and rather cell damaging) amount of excitation energy is needed to induce FRET (Dixit et al., 2006). Additionally, CFP displays multiexponential lifetimes with a shorter (1.3 ns) and a longer (2.6 ns) component (Becker et al., 2006). Although the deviation from the single-component decay is reasonably small (Tramier et al., 2002; Becker et al., 2006), the shorter CFP lifetime component can erroneously be interpreted as being the result of lifetime reduction due to energy transfer. At the same time, weak or transient protein associations may get masked and thus remain undetected. Whereas the parental wild-type GFP is extremely photostable and shows a monoexponential decay pattern (excited-state lifetime 3.16 ± 0.03 ns; Striker et al., 1999; Volkmer et al., 2000; Shaner et al., 2005), its close spectral overlap with YFP makes it unsuitable as a donor in GFP-YFP FRET experiments. Likewise, wild-type or enhanced GFP (or YFP) as a donor to red-shifted monomers as acceptors is suboptimal because the 488-nm (or 514-nm) laser line commonly used to excite GFP (or YFP) cross excites most of the red monomers (e.g. mOrange, mStrawberry) because of their broad excitation spectra (Zapata-Hommer and Griesbeck, 2003; Shaner et al., 2004).Recently, TSapphire (Q69M/C70P/V163A/S175G; excitation/emission 399/511 nm), a variant of the Sapphire (T203I) mutant of wild-type GFP with improved folding properties and better pH sensitivity, was described (Zapata-Hommer and Griesbeck, 2003). The T203I mutation in TSapphire (and original Sapphire as well) abolishes the 475-nm excitation peak found in the wild-type GFP (Tsien, 1998). TSapphire is efficiently excited below 410 nm, which makes it ideal for studying plant protein dynamics and interactions because, at this wavelength, there is negligible excitation of the autofluorescing chlorophyll pigments. Furthermore, TSapphire also represents a good donor to red monomer acceptors that are negligibly excited at this wavelength (Shaner et al., 2004). Using a purified Zn2+ sensor with TSapphire and mOrange as a donor-acceptor pair, Shaner and colleagues demonstrated the ratiometric intramolecular FRET between the two fluorophores in vitro (Shaner et al., 2004). The sensor yielded a 6-fold ratiometric increase (562/514-nm mOrange/TSapphire emission ratio) upon Zn2+ binding.However, currently there are no reports demonstrating the application and use of TSapphire and monomeric red-shifted fluorophores as donor-acceptor FRET pairs to probe intermolecular protein-protein interactions in vivo. In this article, we demonstrate in vivo FRET-fluorescence lifetime imaging microscopy (FLIM) between the donor TSapphire and the acceptor mOrange. We show that TSapphire expressed in living plant cells decays with a monoexponential lifetime of 2.93 ± 0.09 ns, which is in agreement with the published lifetime for its parent wild-type GFP (3.2 ns; Striker et al., 1999; Volkmer et al., 2000). Furthermore, we demonstrate intramolecular FRET-FLIM between chimerically linked TSapphire and mOrange (with a 16-amino acid linker in between). When fused to genetically known interacting proteins and expressed in intact living cells, the donor and the acceptor fluorophores show energy transfer in different subcellular compartments indicative of intermolecular protein-protein interactions. These results validate the versatility of the proposed in vivo FRET-FLIM assay based on the donor TSapphire and the acceptor mOrange, which turns out to work with both soluble and membrane proteins.  相似文献   

11.
The Photoluminescence of quantum dots have been found to be a useful tool for the detection of small to medium sized analyte molecules in a host-guest environment. By the incorporation of quantum dots into molecularly imprinted polymers, which can offer shape and selectivity, the former can respond by quenching the photoluminescence emission upon template binding. In this work host polymers were synthesized and cased into thin films using functional monomers such as methacrylic acid (MAA), CdSe/ZnS core-shell derivatized with 4-vinyl pyridine and ethylene glycol dimethacrylic acid (EGDMA) as a cross-linker. The intensity of photoluminescence emission is detected upon analyte binding.  相似文献   

12.
A self-assembling sensor for oleic acid has been developed. The sensor consists of a self-assembling fluorescent dye labeled BSA and quantum dots CdSe/ZnS capped with 3-mercaptopropionic acid. The detection limit of the new sensor is 10-1000 nM. The influence of the quantum dot size on the FRET efficiency in the course of the interaction of the sensor system with the analyte has been studied. The pH dependence, aggregation stability. and electrophoretic properties of the sensor have been examined. The data suggest a new approach for the development of nanoscale FRET-based sensors operating effectively due to unique fluorescent properties of quantum dots as well as due to selective protein-ligand interactions.  相似文献   

13.
We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of alpha-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66-68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor-acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied.  相似文献   

14.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

15.
分别采用两种不同绿色荧光蛋白(green fluorescent prote in,GFP)突变体作为荧光共振能量转移(fluo-rescence resonance energy transfer,FRET)对的供体和受体,并利用分子生物学技术将供体和受体分子分别与特定的生物分子融合,这种技术已经成为在单个活细胞中实时长时间检测蛋白质间的动态相互作用的主要技术。主要介绍了基于GFPs的FRET技术在单个活细胞中实时长时间研究生物分子动态行为的应用。  相似文献   

16.
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7.The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs.Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate.We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.  相似文献   

17.
Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.  相似文献   

18.
The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV–visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO–LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor–acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor–acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide–protein interaction.  相似文献   

19.
Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.  相似文献   

20.
Detection of Forster resonance energy transfer (FRET) between fluorescent protein labeled targets is a valuable strategy for measurement of protein-protein interactions and other intracellular processes. Despite the utility of FRET, widespread application of this technique to biological problems and high-throughput screening has been limited by low-contrast measurement strategies that rely on the detection of sensitized emission or photodestruction of the sample. Here we report a FRET detection strategy based on detecting depolarized sensitized emission. In the absence of FRET, we show that fluorescence emission from a donor fluorescent protein is highly polarized. Depolarization of fluorescence emission is observed only in the presence of energy transfer. A simple detection strategy was adapted for fluorescence microscopy using both laser scanning and wide-field approaches. This approach is able to distinguish FRET between linked and unlinked Cerulean and Venus fluorescent proteins in living cells with a larger dynamic range than other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号