首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
众所周知, 鞘脂是生物膜结构的重要组成成分, 随着鞘脂在动物和酵母中的深入研究发现, 鞘脂及其代谢产物是一类很重要的活性分子, 它们参与调节细胞的生长、分化、衰老和细胞程序性死亡等许多重要的信号转导过程。鞘脂在植物中的研究最近几年才开始, 植物鞘脂的功能还不十分清楚。最近的研究发现, 鞘脂及其代谢产物在植物中也起着很重要的信号分子作用。该文详细总结了鞘脂在植物中的结构、代谢途径和主要生物学功能, 并结合实验室的工作对植物鞘脂的功能研究进行了展望。  相似文献   

2.
鞘脂是细胞生物膜结构的重要组分, 鞘脂及其代谢产物参与许多重要的信号转导过程。在植物-真菌互作中, 植物鞘脂的主要作用是诱导细胞发生程序性死亡; 真菌鞘脂既能引起植物死亡, 也能诱导植物产生抗病性。该文总结了植物和真菌鞘脂的结构及代谢特点, 综述了鞘脂参与调控植物-真菌互作的分子机制研究进展, 并展望了植物-真菌共生关系中鞘脂作用的研究方向。  相似文献   

3.
单婷婷  陈晓梅 《植物学报》1983,54(3):396-404
鞘脂是细胞生物膜结构的重要组分, 鞘脂及其代谢产物参与许多重要的信号转导过程。在植物-真菌互作中, 植物鞘脂的主要作用是诱导细胞发生程序性死亡; 真菌鞘脂既能引起植物死亡, 也能诱导植物产生抗病性。该文总结了植物和真菌鞘脂的结构及代谢特点, 综述了鞘脂参与调控植物-真菌互作的分子机制研究进展, 并展望了植物-真菌共生关系中鞘脂作用的研究方向。  相似文献   

4.
鞘脂代谢及其相关疾病研究进展   总被引:1,自引:0,他引:1  
近年对鞘脂代谢及其产物的研究越来越多.鞘脂及其代谢产物不仅是构成细胞膜的重要结构分子,而且参与调节细胞的生长、分化、衰老和细胞程序性死亡等许多重要的信号转导过程,使细胞产生各种不同的生物学功能.该文综述了鞘脂代谢途径的重要酶,鞘脂及其代谢产物的功能,以及它们与相关疾病的研究进展,并就其存在的问题和今后可能的研究方向做出展望.为鞘脂代谢的过程和鞘脂相关疾病的生理病理学研究提供重要的理论依据.  相似文献   

5.
邹文娇  葛磊  予茜 《植物学报》2021,56(5):627-640
膜脂是细胞膜的主要组分, 也是参与信号转导的重要信号分子。不同脂质分子在细胞膜上的不均等分布需要特殊类型的通道蛋白和运输蛋白来实现。氧化甾醇结合蛋白相关蛋白(ORPs)是一类非常保守的蛋白分子, 能够对磷脂酰肌醇和固醇等脂类分子进行识别并转运, 参与细胞中的许多生理过程, 包括信号转导、囊泡运输、脂类代谢和非囊泡运输等, 对于个体的生长发育具有重要作用。近几年, 关于ORPs在哺乳动物和酵母(Saccharomyces cerevisiae)中结构和功能的研究取得了一系列重要进展, 但在植物中相关研究尚少。该文综述了ORPs及其相关蛋白在哺乳动物、酵母和植物中的研究进展, 探讨了植物ORPs的结构及其与哺乳动物和酵母同源蛋白之间的进化关系, 并对植物ORPs未来的研究方向进行了展望。  相似文献   

6.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

7.
佛波酯诱导一种新的磷脂酶D酶解产物的生成   总被引:1,自引:1,他引:0  
在人肺癌表面细胞株A-549中检测到佛波酯诱导的丁醇化鞘脂分子的产生。用[^3H]-丝氨酸标记细胞,其放射性在磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺极性头部的分布很容易被检测到,而在磷脂酸及其直接代谢衍生物中并不存在,提示这种磷脂酶D的酶解产物来源于鞘脂分子的水解,而不同于以甘油磷脂为底物的磷脂酶D的酶解产物。蛋白激酶C的抑制剂或通过佛波酯长时间处理下调细胞内蛋白激酶C水平,可抑制佛波酯诱导的丁酯化鞘脂分子的产生,表明导致这种磷脂酶D的活化需要蛋白激酶C的参与。  相似文献   

8.
吴俐  王若仲  徐文忠 《植物学报》2013,48(1):94-106
在酵母、真菌、动物和植物等真核生物中, 以myo-肌醇为基石通过不同位点的磷酸化形成各种myo-肌醇-多磷酸及其衍生物。过去10年的研究发现这些肌醇多磷酸参与了膜脂定向转运、蛋白结构稳定、离子通道调控、RNA转运以及DNA修复和染色质重塑等细胞生物学的基本进程。近些年在模式植物拟南芥(Arabidopsis thaliana)的研究中, 许多调控植物生长发育和环境胁迫应答的重要基因被发现, 并证实这些基因参与myo-肌醇-多磷酸的合成与代谢。该文概述了拟南芥中myo-肌醇-多磷酸合成与代谢的基因调控机理, 综述了不同肌醇多磷酸作为信号分子的功能, 提出肌醇多磷酸如同一类信息代码传递着植物细胞有序进程的基本指令。  相似文献   

9.
糖鞘脂(glycosphingolipids,GSLs)广泛存在于各种生物细胞膜的磷脂双分子层中,在维持细胞膜稳定性、调节包括粘附、增殖、凋亡和识别等多种细胞过程方面发挥着重要作用,并参与细胞多种生命活动。除此之外,GSLs与细胞凋亡过程密切相关,肿瘤相关GSLs有望作为恶性肿瘤的诊断标志物和免疫治疗靶点,这些发现对研究细胞凋亡及肿瘤治疗的新方向具有重要意义。因此,本文综述了GSLs介导细胞凋亡及其影响肿瘤细胞发生、发展和转移的最新研究进展,并讨论了GSLs代谢途径及其在肿瘤治疗中的研究现状,以及基于GSLs的靶向治疗策略的发展前景。  相似文献   

10.
鞘脂(sphingolipids)是生物细胞中最主要的膜脂之一,同时也作为信号分子介导细胞生长、增殖、迁移及死亡等重要的生理反应,异常鞘脂代谢经常与心血管疾病、糖尿病、癌症、神经变性病以及自身免疫性疾病等相关。丝氨酸棕榈酰转移酶(serine palmitoyltransferase, SPT)及其复合物是鞘脂从头合成途径的起始酶和关键酶,催化L-丝氨酸与棕榈酰辅酶A缩合形成3-酮二氢鞘氨醇,之后再经过一系列反应生成神经酰胺和其它重要的鞘脂,在鞘脂代谢和稳态调节方面发挥重要作用。本文基于国内外对SPT的研究,综述了SPT的构型、活性位点、底物结合位点等关键的结构信息,尤其近2年的研究发现,SPT是一种组成极其复杂的酶,各个亚基之间存在错综复杂的相互作用和高度调控。SPT具有重要的生物学功能,包括参与胚胎发育、调节内环境稳态、诱导细胞凋亡和参与机体免疫调节等。SPT还可以通过调节酶活性影响鞘脂代谢,进而影响血管疾病和肿瘤的发生发展,并有潜力成为肿瘤诊断和治疗的关键分子。此外,SPT突变体与神经变性病密切相关,本文着重介绍了遗传性感觉与自主神经病变1型(hereditary sensory...  相似文献   

11.
In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular functions. In plants, sphingolipids show structural features differing from those found in animals and fungi, and much less is known about their biosynthesis and function. This review focuses on the sphingolipid modifications found in plants and on recent advances in the functional characterization of genes gaining new insight into plant sphingolipid biosynthesis. Recent studies indicate that plant sphingolipids may be also involved in signal transduction, membrane stability, host-pathogen interactions and stress responses.  相似文献   

12.
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.Typical examples of eukaryotic lipids, sterols, and sphingolipids can both be found in membranes from simple unicellular fungi and protists to multicellular animals and plants. Their versatile use as structural elements but also as signaling molecules has probably played an important role during the evolution of this large and diverse group of organisms. There are also many eukaryotes that have lost the ability to synthesize sterols de novo including nematodes, insects, and marine invertebrates, which have to take up sterols with their diet. Sterol biosynthesis has also been reported in a number of bacteria. Sphingolipids are more widely spread among prokaryotes than sterols and also show a greater variety of structures among the different eukaryotes.In this short review we will first give an overview about the diversity of sterol and sphingolipid structures and their distribution in nature. Then we will discuss their subcellular distribution. A brief technical section will add some information on the separation and detection of these lipid molecules. Subsequently, we will summarize different genetic approaches to study the functions of sterols and sphingolipids, and finally, we will discuss the functional and possible physical interactions of the two lipid classes within the cell. Far from being comprehensive, we will focus only on a few interesting aspects and try to give new view points, which are less frequently discussed.  相似文献   

13.
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson’s disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions.This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.  相似文献   

14.
Recent advances in comprehensive metabolite profiling techniques, the foundation of metabolomics, is facilitating our understanding of the functions, regulation and complex networks of various metabolites in organisms. Here, we report a quantitative metabolomics technique for complex plant sphingolipids, composed of various polar head groups as well as structural isomers of hydrophobic ceramide moieties. Rice (Oryza sativa L.) was used as an experimental model of monocotyledonous plants and has been demonstrated to possess a highly complex sphingolipidome including hundreds of molecular species with a wide range of abundance. We established a high‐throughput scheme for lipid preparation and mass spectrometry‐based characterization of complex sphingolipid structures, which provided basic information to create a comprehensive theoretical library for targeted quantitative profiling of complex sphingolipids in rice. The established sphingolipidomic approach combined with multivariate analyses of the large dataset obtained clearly showed that different classes of rice sphingolipids, particularly including subclasses of glycosylinositol phosphoceramide with various sugar‐chain head groups, are distributed with distinct quantitative profiles in various rice tissues, indicating tissue‐dependent metabolism and biological functions of the lipid classes and subclasses. The sphingolipidomic analysis also highlighted that disruption of a lipid‐associated gene causes a typical sphingolipidomic change in a gene‐dependent manner. These results clearly support the utility of the sphingolipidomic approach in application to wide screening of sphingolipid‐metabolic phenotypes as well as deeper investigation of metabolism and biological functions of complex sphingolipid species in plants.  相似文献   

15.
Historically discovered for its role in blood coagulation, there is now convincing evidence that vitamin K has important actions in the nervous system. As a unique cofactor to the γ-glutamyl carboxylase enzyme, vitamin K contributes to the biological activation of proteins Gas6 and protein S, ligands for the receptor tyrosine kinases of the TAM family (Tyro3, Axl, and Mer). Functionally, Gas6 has been involved in a wide range of cellular processes that include cell growth, survival, and apoptosis. In brain, vitamin K also participates in the synthesis of sphingolipids, an important class of lipids present in high concentrations in brain cell membranes. In addition to their structural role, sphingolipids are now known to partake in important cellular events such as proliferation, differentiation, senescence and cell-cell interactions. In recent years, studies have linked alterations in sphingolipid metabolism to age-related cognitive decline and neurodegenerative diseases such as Alzheimer's disease (AD). Emerging data also point to unique actions of the K vitamer menaquinone-4 (MK-4) against oxidative stress and inflammation. Finally, there is now data to suggest that vitamin K has the potential to influence psychomotor behavior and cognition. This review presents an overview of what is known of the role of vitamin K in brain function.  相似文献   

16.
Sphingolipids are major components of the plasma membrane, tonoplast, and other endomembranes of plant cells. Previous compositional analyses have focused only on individual sphingolipid classes because of the widely differing polarities of plant sphingolipids. Consequently, the total content of sphingolipid classes in plants has yet to be quantified. In addition, the major polar sphingolipid class in the model plant Arabidopsis thaliana has not been previously determined. In this report, we describe the separation and quantification of sphingolipid classes from A. thaliana leaves using hydrolysis of sphingolipids and high performance liquid chromatography (HPLC) analysis of o-phthaldialdehyde derivatives of the released long-chain bases to monitor the separation steps. An extraction solvent that contained substantial proportions of water was used to solubilized >95% of the sphingolipids from leaves. Neutral and charged sphingolipids were then partitioned by anion exchange solid phase extraction. HPLC analysis of the charged lipid fraction from A. thaliana revealed only one major anionic sphingolipid class, which was identified by mass spectrometry as hexose-hexuronic-inositolphosphoceramide. The neutral sphingolipids were predominantly composed of monohexosylceramide with lesser amounts of ceramides. Extraction and separation of sphingolipids from soybean and tomato showed that, like A. thaliana, the neutral sphingolipids consisted of ceramide and monohexosylceramides; however, the major polar sphingolipid was found to be N-acetyl-hexosamine-hexuronic-inositolphosphoceramide. In extracts from A. thaliana leaves, hexosehexuronic-inositolphosphoceramides, monohexosylceramides, and ceramides accounted for approximately 64, 34, and 2% of the total sphingolipids, respectively, suggesting an important role for the anionic sphingolipids in plant membranes.  相似文献   

17.
Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants, which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth, and had enhanced expression of programmed cell death associated-genes. Furthermore, the total content of sphingolipids on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB-null mutants, sphingolipid content was approximately 2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and mediating the total content and fatty acid composition of sphingolipids in plants.  相似文献   

18.
鞘脂与细胞凋亡   总被引:2,自引:0,他引:2  
Wang J  Hu XS  Shi JP 《生理科学进展》2003,34(3):217-221
随着生物技术的不断发展,近年来对鞘脂类物质的研究不断深入。鞘脂质除了在细胞骨架的迁移、血管发生、胚胎发育和信号转导等方面起重要作用外,最近的研究发现鞘脂及其代谢物(神经酰胺、鞘氨醇、鞘氨醇-1-磷酸)能诱导多种肿瘤和恶性增殖细胞(如腺癌、结肠癌、肝肿瘤、肺癌、鼻咽癌等)的凋亡。本文着重对鞘脂与细胞凋亡相关的最新研究进展进行综述。  相似文献   

19.
Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号