首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
Many genetic loci and SNPs associated with many common complex human diseases and traits are now identified. The total genetic variance explained by these loci for a trait or disease, however, has often been very small. Much of the "missing heritability" has been revealed to be hidden in the genome among the large number of variants with small effects. Several recent studies have reported the presence of multiple independent SNPs and genetic heterogeneity in trait-associated loci. It is therefore reasonable to speculate that such a phenomenon could be common among loci known to be associated with a complex trait or disease. For testing this hypothesis, a total of 117 loci known to be associated with rheumatoid arthritis (RA), Crohn disease (CD), type 1 diabetes (T1D), or type 2 diabetes (T2D) were selected. The presence of multiple independent effects was assessed in the case-control samples genotyped by the Wellcome Trust Case Control Consortium study and imputed with SNP genotype information from the HapMap Project and the 1000 Genomes Project. Eleven loci with evidence of multiple independent effects were identified in the study, and the number was expected to increase at larger sample sizes and improved statistical power. The variance explained by the multiple effects in a locus was much higher than the variance explained by the single reported SNP effect. The results thus significantly improve our understanding of the allelic structure of these individual disease-associated loci, as well as our knowledge of the general genetic mechanisms of common complex traits and diseases.  相似文献   

2.
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.  相似文献   

3.
Bioinformatics and re-sequencing approaches were used for the discovery of sequence polymorphisms in Litopenaeus vannamei . A total of 1221 putative single nucleotide polymorphisms (SNPs) were identified in a pool of individuals from various commercial populations. A set of 211 SNPs were selected for further molecular validation and 88% showed variation in 637 samples representing three commercial breeding lines. An association analysis was performed between these markers and several traits of economic importance for shrimp producers including resistance to three major viral diseases. A small number of SNPs showed associations with test weekly gain, grow-out survival and resistance to Taura Syndrome Virus. Very low levels of linkage disequilibrium were revealed between most SNP pairs, with only 11% of SNPs showing an r 2-value above 0.10 with at least one other SNP. Comparison of allele frequencies showed small changes over three generations of the breeding programme in one of the commercial breeding populations. This unique SNP resource has the potential to catalyse future studies of genetic dissection of complex traits, tracing relationships in breeding programmes, and monitoring genetic diversity in commercial and wild populations of L. vannamei .  相似文献   

4.
Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.  相似文献   

5.
Summary A two‐stage design is cost‐effective for genome‐wide association studies (GWAS) testing hundreds of thousands of single nucleotide polymorphisms (SNPs). In this design, each SNP is genotyped in stage 1 using a fraction of case–control samples. Top‐ranked SNPs are selected and genotyped in stage 2 using additional samples. A joint analysis, combining statistics from both stages, is applied in the second stage. Follow‐up studies can be regarded as a two‐stage design. Once some potential SNPs are identified, independent samples are further genotyped and analyzed separately or jointly with previous data to confirm the findings. When the underlying genetic model is known, an asymptotically optimal trend test (TT) can be used at each analysis. In practice, however, genetic models for SNPs with true associations are usually unknown. In this case, the existing methods for analysis of the two‐stage design and follow‐up studies are not robust across different genetic models. We propose a simple robust procedure with genetic model selection to the two‐stage GWAS. Our results show that, if the optimal TT has about 80% power when the genetic model is known, then the existing methods for analysis of the two‐stage design have minimum powers about 20% across the four common genetic models (when the true model is unknown), while our robust procedure has minimum powers about 70% across the same genetic models. The results can be also applied to follow‐up and replication studies with a joint analysis.  相似文献   

6.
For mapping complex disease traits, linkage studies are often followed by a case-control association strategy in order to identify disease-associated genes/single-nucleotide polymorphisms (SNPs). Substantial efforts are required in selecting the most informative cases from a large collection of affected individuals in order to maximize the power of the study, while taking into consideration study cost. In this article, we applied and extended three case-selection strategies that use allele-sharing information method for families with multiple affected offspring to select most informative cases using additional information on disease severity. Our results revealed that most significant associations, as measured by the lowest p-values, were obtained from a strategy that selected a case with the most allele sharing with other affected sibs from linked families ("linked-best"), despite reduction in sample size resulting from discarding unlinked families. Moreover, information on disease severity appears to be useful to improve the ability to detect associations between markers and disease loci.  相似文献   

7.
A great majority of genetic markers discovered in recent genome-wide association studies have small effect sizes, and they explain only a small fraction of the genetic contribution to the diseases. How many more variants can we expect to discover and what study sizes are needed? We derive the connection between the cumulative risk of the SNP variants to the latent genetic risk model and heritability of the disease. We determine the sample size required for case-control studies in order to achieve a certain expected number of discoveries in a collection of most significant SNPs. Assuming similar allele frequencies and effect sizes of the currently validated SNPs, complex phenotypes such as type-2 diabetes would need approximately 800 variants to explain its 40% heritability. Much smaller numbers of variants are needed if we assume rare-variants but higher penetrance models. We estimate that up to 50,000 cases and an equal number of controls are needed to discover 800 common low-penetrant variants among the top 5000 SNPs. Under common and rare low-penetrance models, the very large studies required to discover the numerous variants are probably at the limit of practical feasibility. Under rare-variant with medium- to high-penetrance models (odds-ratios between 1.6 and 4.0), studies comparable in size to many existing studies are adequate provided the genotyping technology can interrogate more and rarer variants.  相似文献   

8.
Technological developments allow increasing numbers of markers to be deployed in case-control studies searching for genetic factors that influence disease susceptibility. However, with vast numbers of markers, true 'hits' may become lost in a sea of false positives. This problem may be particularly acute for infectious diseases, where the control group may contain unexposed individuals with susceptible genotypes. To explore this effect, we used a series of stochastic simulations to model a scenario based loosely on bovine tuberculosis. We find that a candidate gene approach tends to have greater statistical power than studies that use large numbers of single nucleotide polymorphisms (SNPs) in genome-wide association tests, almost regardless of the number of SNPs deployed. Both approaches struggle to detect genetic effects when these are either weak or if an appreciable proportion of individuals are unexposed to the disease when modest sample sizes (250 each of cases and controls) are used, but these issues are largely mitigated if sample sizes can be increased to 2000 or more of each class. We conclude that the power of any genotype-phenotype association test will be improved if the sampling strategy takes account of exposure heterogeneity, though this is not necessarily easy to do.  相似文献   

9.
全基因组关联分析的进展与反思   总被引:1,自引:0,他引:1  
Tu X  Shi LS  Wang F  Wang Q 《生理科学进展》2010,41(2):87-94
全基因组关联分析(genomewide association study,GWAS)是应用人类基因组中数以百万计的单核苷酸多态性(single nucleotide polymorphism,SNP)为标记进行病例-对照关联分析,以期发现影响复杂性疾病发生的遗传特征的一种新策略。近年来,随着人类基因组计划和基因组单倍体图谱计划的实施,人们已通过GWAS方法发现并鉴定了大量与人类性状或复杂性疾病关联的遗传变异,为进一步了解控制人类复杂性疾病发生的遗传特征提供了重要的线索。然而,由于造成复杂性疾病/性状的因素较多,而且GWAS研究系统较为复杂,因此目前GWAS本身亦存在诸多的问题。本文将从研究方式、研究对象、遗传标记,以及统计分析等方面,探讨GWAS的研究现状以及存在的潜在问题,并展望GWAS今后的发展方向。  相似文献   

10.
Improving immune capacity may increase the profitability of animal production if it enables animals to better cope with infections. Hematological traits play pivotal roles in animal immune capacity and disease resistance. Thus far, few studies have been conducted using a high‐density swine SNP chip panel to unravel the genetic mechanism of the immune capability in domestic animals. In this study, using mixed model‐based single‐locus regression analyses, we carried out genome‐wide association studies, using the Porcine SNP60 BeadChip, for immune responses in piglets for 18 hematological traits (seven leukocyte traits, seven erythrocyte traits, and four platelet traits) after being immunized with classical swine fever vaccine. After adjusting for multiple testing based on permutations, 10, 24, and 77 chromosome‐wise significant SNPs were identified for the leukocyte traits, erythrocyte traits, and platelet traits respectively, of which 10 reached genome‐wise significance level. Among the 53 SNPs for mean platelet volume, 29 are located in a linkage disequilibrium block between 32.77 and 40.59 Mb on SSC6. Four genes of interest are located within the block, providing genetic evidence that this genomic segment may be considered a candidate region relevant to the platelet traits. Other candidate genes of interest for red blood cell, hemoglobin, and red blood cell volume distribution width also have been found near the significant SNPs. Our genome‐wide association study provides a list of significant SNPs and candidate genes that offer valuable information for future dissection of molecular mechanisms regulating hematological traits.  相似文献   

11.
Marginal tests based on individual SNPs are routinely used in genetic association studies. Studies have shown that haplotype‐based methods may provide more power in disease mapping than methods based on single markers when, for example, multiple disease‐susceptibility variants occur within the same gene. A limitation of haplotype‐based methods is that the number of parameters increases exponentially with the number of SNPs, inducing a commensurate increase in the degrees of freedom and weakening the power to detect associations. To address this limitation, we introduce a hierarchical linkage disequilibrium model for disease mapping, based on a reparametrization of the multinomial haplotype distribution, where every parameter corresponds to the cumulant of each possible subset of a set of loci. This hierarchy present in the parameters enables us to employ flexible testing strategies over a range of parameter sets: from standard single SNP analyses through the full haplotype distribution tests, reducing degrees of freedom and increasing the power to detect associations. We show via extensive simulations that our approach maintains the type I error at nominal level and has increased power under many realistic scenarios, as compared to single SNP and standard haplotype‐based studies. To evaluate the performance of our proposed methodology in real data, we analyze genome‐wide data from the Wellcome Trust Case‐Control Consortium.  相似文献   

12.
Because of increasing litter size in Western pig breeds, additional teats are desirable to increase the capacity for nursing offspring. We applied genome‐wide SNP markers to detect QTL regions that affect teat number in a Duroc population. We phenotyped 1024 animals for total teat number. A total of 36 588 SNPs on autosomes were used in the analysis. The estimated heritability for teat number was 0.34 ± 0.05 on the basis of a genomic relationship matrix constructed from all SNP markers. Using a BayesC method, we identified a total of 18 QTL regions that affected teat number in Duroc pigs; 9 of the 18 regions were newly detected.  相似文献   

13.
Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.  相似文献   

15.
《PloS one》2012,7(12)
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.  相似文献   

16.
C. Luo  L. Sun  J. Ma  J. Wang  H. Qu  D. Shu 《Animal genetics》2015,46(3):265-271
MicroRNAs are an abundant class of small non‐coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR‐1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR‐1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga‐miR‐1596‐3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast‐growing commercial lines and the slow‐growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast‐growing and a slow‐growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 was significantly associated with RFI. These findings suggest that miR‐1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga‐miR‐1596‐3p microRNA in chicken.  相似文献   

17.
Recent studies have indicated that linkage disequilibrium (LD) between single nucleotide polymorphism (SNP) markers can be used to derive a reduced set of tagging SNPs (tSNPs) for genetic association studies. Previous strategies for identifying tSNPs have focused on LD measures or haplotype diversity, but the statistical power to detect disease-associated variants using tSNPs in genetic studies has not been fully characterized. We propose a new approach of selecting tSNPs based on determining the set of SNPs with the highest power to detect association. Two-locus genotype frequencies are used in the power calculations. To show utility, we applied this power method to a large number of SNPs that had been genotyped in Caucasian samples. We demonstrate that a significant reduction in genotyping efforts can be achieved although the reduction depends on genotypic relative risk, inheritance mode and the prevalence of disease in the human population. The tSNP sets identified by our method are remarkably robust to changes in the disease model when small relative risk and additive mode of inheritance are employed. We have also evaluated the ability of the method to detect unidentified SNPs. Our findings have important implications in applying tSNPs from different data sources in association studies.  相似文献   

18.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

19.
We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.  相似文献   

20.
We present a new method to efficiently estimate very large numbers of p-values using empirically constructed null distributions of a test statistic. The need to evaluate a very large number of p-values is increasingly common with modern genomic data, and when interaction effects are of interest, the number of tests can easily run into billions. When the asymptotic distribution is not easily available, permutations are typically used to obtain p-values but these can be computationally infeasible in large problems. Our method constructs a prediction model to obtain a first approximation to the p-values and uses Bayesian methods to choose a fraction of these to be refined by permutations. We apply and evaluate our method on the study of association between 2-way interactions of genetic markers and colorectal cancer using the data from the first phase of a large, genome-wide case-control study. The results show enormous computational savings as compared to evaluating a full set of permutations, with little decrease in accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号