首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.  相似文献   

4.
5.
Derivatives of (S)-2-fluoro-L-daunosamine and (S)-2-fluoro-D-ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy-D-glucose which was converted, according to the literature, into methyl 2-benzamido-4, 6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-alpha-D-glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-alpha-D-altropyran oside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-alpha-D-gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-beta-L-galactopyranos ide. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-alpha-D-altropyran oside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H-19F coupling constants, in comparison with the reported effects of oxygen substituents.  相似文献   

6.
7.
8.
The compound Rp-d[Gp(S)CpGp(S)CpGp(S)C], an analogue of the deoxyoligomer d(G-C)3, crystallizes in space group P2(1)2(1)2(1) with a = 34.90 A, b = 39.15 A and c = 20.64 A. The structure, which is not isomorphous with any previously determined deoxyoligonucleotide, was refined to an R factor of 14.5% at a resolution of 2.17 A, with 72 solvent molecules located. The two strands of the asymmetric unit form a right-handed double helix, which is a new example of a B-DNA conformation and brings to light an important and overlooked component of flexibility of the double helix. This flexibility is manifest in the alternation of the backbone conformation between two states, defined by the adjacent torsion angles epsilon and zeta, trans . gauche-(BI) and gauche-. trans (BII). BI is characteristic of classical of B-DNA and has an average C(1') to C(1') separation of 4.5 A. The corresponding separation for BII is 5.3 A. Each state is associated with a distinct phosphate orientation where the plane of the PO2 (or POS) group is alternately near horizontal or vertical with respect to the helix axis. The BI and BII conformations are out of phase on the two strands. As a consequence, on one strand purine-pyrimidine stacking is better than pyrimidine-purine, while the converse holds for the other strand. At each base-pair step, good and bad stacking alternate across the helix axis. The pattern of alternation is regular in the context of a fundamental dinucleotide repeat. Re-examination of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G) shows that the C-G-C-G regions contain the BI and BII conformations, and the associated dual phosphate orientation and asymmetric base stacking. Different mechanisms are used in the two structures to avoid clashes between guanine residues on opposite strands, a combination of lateral slide, tilt and helical twist in the present structure, and base roll, tilt and longitudinal slide (Calladine rules) in the dodecamer. The flexibility of the phosphate orientations demonstrated in this structure is important, since it offers a structural basis for protein-nucleic acid recognition.  相似文献   

9.
We present an optimized procedure for the synthesis of (S)-vinylglycine from (S)-methionine. The key step is a solvent free pyrolysis of an intermediate sulfoxide at high temperature. Using our optimized reaction conditions, Cbz-protected vinylglycine was obtained in high yield and with almost no side products. The protocol is scalable, fast and avoids the use of poisonous reagents.  相似文献   

10.
11.
12.
S. Levin (1999)     
《Journal of Ecology》2000,88(1):181-181
  相似文献   

13.
The (S,S,S,R,S,R)-configurated cyclohexadepsipeptides (CHDPs) represent novel enniatin derivatives with strong in vivo activity against the parasitic nematode Haemonchus contortus Rudolphi in sheep. 2D NMR spectroscopic analysis revealed for the major conformation the asymmetric conformer, containing a cis-amide bond between C(alpha) protons of neighbouring 2-hydroxy-(S)-carboxylic acid and N-methyl-(S)-amino acid. The absolute configuration of the novel CHDPs was determined by X-ray crystallography. A correlation between the major conformer and its anthelmintic activity was found. Here, we report on a simple total synthetic pathway for this particular type of CHDPs.  相似文献   

14.
We report the synthesis and biological activity of a series of side-chain-constrained RGD peptides containing the (2S,3R) or (2S,3S) beta-methyl aspartic acid within the RGD sequence. These compounds have been assayed for binding to the integrin receptors alpha(IIb)beta3 and alpha(v)beta3 and the results demonstrate the importance of the side-chain orientation of this particular residue within the RGD sequence. Based on our findings, the (2S,3S) beta-methylated analogues of our RGD sequences maintain their binding potency to the integrin receptors while the (2S,3R) beta-methylated analogues exhibit a drastically reduced binding affinity. Our studies demonstrate that the three-dimensional orientation of the aspartyl side chain is a very important parameter for integrin binding and that small changes that affect the side-chain orientations give rise to drastic changes in binding affinity. These results provide important information for the design of more potent RGD mimetics.  相似文献   

15.
The rabbit reticulocyte lipoxygenase is known to display an unusual facility for oxygenation of esterified polyunsaturated fatty acids, yet the precise structures of the products are not known. With free arachidonate as substrate the enzyme is known to catalyze 15S and 12S oxygenations, and demonstration of a facility for catalysis of these reactions on phospholipids would extend the potential scope of lipoxygenase reactions in cells. We elected to study in detail the reaction of the enzyme with a natural phospholipid, palmitoyl/arachidonoyl-phosphatidylcholine. We determined the nature of the products by initial isolation by RP-HPLC, followed by transesterification and identification of the oxygenated products by HPLC, uv, GC-MS, and steric analysis of hydroxyl configuration by HPLC. The major product was identified as a phosphatidylcholine in which the arachidonate component was converted to the 15(S)-hydroperoxy-eicosatetraenoate. A second oxygenated phospholipid was produced in smaller quantities (2-5% of the latter product) and identified as the 12(S)-oxygenated analog. These products were also identified after reaction of the reticulocyte lipoxygenase with human red cell membranes which were radiolabeled by preincubation with [3H]arachidonic acid. The finding of 12S oxygenation represents the first evidence that a lipoxygenase can control a reaction centered on the 10-carbon of an arachidonoyl phospholipid. This is an important precedent, because hydrogen abstraction from carbon-10 is a critical step in the lipoxygenase-catalyzed synthesis of 8- and 12-hydroperoxy-eicosatetraenoates (HPETEs) and for the conversion of 5- and 15-HPETEs to leukotrienes.  相似文献   

16.
N P Botting  M A Cohen  M Akhtar  D Gani 《Biochemistry》1988,27(8):2956-2959
3-Methylaspartate ammonia-lyase catalyzes the deamination of (2S)-aspartic acid 137 times more slowly than the deamination of (2S,3S)-3-methylaspartic acid but catalyzes the amination of fumaric acid 1.8 times faster than the amination of mesaconic acid [Botting, N.P., Akhtar, M., Cohen, M. A., & Gani, D. (1988) Biochemistry (preceding paper in this issue)]. In order to understand the mechanistic basis for these observations, the deamination reaction was examined kinetically with (2S)-aspartic acid, (2S,3S)-3-methylaspartic acid, (2S,3S)-3-ethylaspartic acid, and the corresponding C-3-deuteriated isotopomers. Comparison of the double-reciprocal plots of the initial reaction velocities for each of the three pairs of substrates revealed that the magnitude of the primary isotope effect on both Vmax and V/K varied with the substituent at C-3 of the substrate. 3-Methylaspartic acid showed the largest isotope effect (1.7 on Vmax and V/K), 3-ethylaspartic acid showed a smaller isotope effect (1.2 on Vmax and V/K), and aspartic acid showed no primary isotope effect at all. These results, which are inconsistent with earlier reports that there is no primary isotope effect for 3-methylaspartic acid [Bright, H. J. (1964) J. Biol. Chem. 239, 2307], suggest that for both 3-methylaspartic acid and 3-ethylaspartic acid elimination occurs via a predominantly concerted mechanism whereas for aspartic acid an E1cb mechanism prevails.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

18.
Seven different supports were compared in solid-phase S(N)Ar and S(N)2 macrocyclization reactions. Product purities were assayed for a relatively facile ring-closure process to give products 1 and 3. Some less-facile ring-closure reactions give the undesired dimeric macrocyclization by-products 2; some of these more-demanding ring closures were also examined. Finally, experiments were performed to gauge the rate of cyclizations on different resins, and some qualitative data were obtained for this.  相似文献   

19.
Yanagisawa A  Asakawa K  Yamamoto H 《Chirality》2000,12(5-6):421-424
(S,S)-Ethylenebis(tetrahydroindenyl)titanium chloride methoxide, (S, S)-(EBTHI)TiCl(OMe) (3) was synthesized from the corresponding titanium dichloride. The asymmetric aldol reaction of enol trichloroacetate of cyclohexanone 1 with aromatic aldehydes was studied in the presence of a catalytic amount of the chiral titanium complex 3, with the result that the optically active syn aldol adduct 2 was preferentially obtained with up to 91% ee.  相似文献   

20.
Shen Z  Ma J  Liu Y  Jiao C  Li M  Zhang Y 《Chirality》2005,17(9):556-558
beta-Cyclodextrin-immobilized (4S)-phenoxy-(S)-proline was prepared conveniently by simply heating the amino acid and beta-cyclodextrin in ethanol-water (1/1, v/v) and removal of the solvent. This proved to be an efficient catalyst for direct asymmetric aldol reactions, and the catalyst could be recycled four times without loss of enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号