首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
By superimposing data obtained by photo-cross-linking RGD-containing ligands to the human alpha(V)beta(3) integrin onto the crystal structure of the ectopic domain of this receptor (Xiong et al. (2001) Science 294, 339-345), we have identified the binding site for the RGD triad within this integrin. We synthesized three novel analogues of the 49-amino acid disintegrin, echistatin: [Bpa(21),Leu(28)]-, [Bpa(23),Leu(28)]-, and [Bpa(28)]echistatin. Each contains a photoreactive p-benzoyl-phenylalanyl (Bpa) residue in close proximity to the RGD motif which spans positions 24-26; together, the photoreactive positions flank the RGD motif. The analogues bind with high affinity to the purified recombinant alpha(V)beta(3) integrin, but very poorly to the closely related human alpha(IIb)beta(3) platelet integrin. While echistatin analogues containing Bpa in either position 23 or 28 cross-link specifically and almost exclusively to the beta(3) subunit of alpha(V)beta(3), [Bpa(21),Leu(28)]echistatin cross-links to both the alpha(V) and the beta(3) subunits, with cross-linking to the former favored. [Bpa(23),Leu(28)]echistatin cross-links 10-30 times more effectively than the other two analogues. We identified beta(3)[109-118] as the domain that encompasses the contact site for [Bpa(28)]echistatin. This domain is included in beta(3)[99-118] (Bitan et al. (2000) Biochemistry 39, 11014-11023), a previously identified contact domain for a cyclic RGD-containing heptapeptide with a benzophenone moiety in a position that is similar to the placement of the benzophenone in [Bpa(28)]echistatin relative to the RGD triad. Recently, we identified beta(3)[209-220] as the contact site for an echistatin analogue with a photoreactive group in position 45, near the C-terminus of echistatin (Scheibler et al. (2001) Biochemistry 40, 15117-14126). Taken together, these results support the hypothesis that the very high binding affinity of echistatin to alpha(V)beta(3) results from two distinct epitopes in the ligand, a site including the RGD triad and an auxiliary epitope at the C-terminus of echistatin. Combining our results from photoaffinity cross-linking studies with data now available from the recently published crystal structure of the ectopic domain of alpha(V)beta(3), we characterize the binding site for the RGD motif in this receptor.  相似文献   

2.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

3.
The integrin alpha(v)beta(3) is the major receptor mediating the attachment of osteoclasts to the extracellular matrix in bone and plays a critical role in bone resorption and bone remodeling. Most of the ligands interacting with the alpha(v)beta(3) receptor contain an Arg-Gly-Asp (RGD) motif. Recently, we have identified two small RGD peptides, containing a benzophenone moiety at either the carboxyl or amino terminus, that photo-cross-linked within the beta(3)[99-118] [Bitan, G., et al. (1999) Biochemistry 38, 3414-3420] or the beta(3)[167-171] [Bitan, G., et al. (2000) Biochemistry 39, 11014-11023] sequence, respectively, of the alpha(v)beta(3) receptor in a selective fashion. Here, we report the synthesis of a photoreactive analogue of echistatin (a 49-amino acid peptide), a potent RGD-containing antagonist of the alpha(v)beta(3) receptor both in vitro and in vivo. This bioactive analogue is substituted at position 45 with a p-benzoyl moiety (pBz(2)), located within the flexible C-terminal domain and removed 20 amino acid residues from the R(24)GD(26) triad. This C-terminal domain was reported to contribute to receptor binding affinity by acting as an auxiliary binding site. The radiolabeled (125)I-[Arg(35),Lys(45)(N(epsilon)-pBz(2))]-echistatin photo-cross-links effectively to a site within the beta(3)[209-220] sequence. Residues in this domain have been reported to be part of the metal ion-dependent adhesion site (MIDAS). Receptor fragments overlapping this domain were reported to bind to fibrinogen and block fibrinogen binding to alpha(IIb)beta(3), the platelet integrin receptor. Taken together, position 45 in echistatin, located within an auxiliary binding site in echistatin, cross-links to a site distinct from the two previously reported sites, beta(3)[99-118] and beta(3)[167-171], which cross-link to photophores flanking the RGD triad. These cross-linking data support the hypothesis that the ligand-bound conformation of the integrin beta(3) subunit differs from the known conformation of I domains.  相似文献   

4.
Glycoprotein (GP) IIb-IIIa is the major fibrinogen receptor on platelets and participates in platelet aggregation at the site of a wound. Integrin alpha v beta 3, which contains an identical beta-subunit, is expressed on endothelial cells and also serves as a fibrinogen receptor. Here, we demonstrate by several criteria that purified GPIIb-IIIa and integrin alpha v beta 3 bind to distinct sites on fibrinogen. First, a plasmin-generated fragment of fibrinogen lacking the RGD sequence at residues 572-574 retained the ability to bind GPIIb-IIIa, but failed to bind integrin alpha v beta 3. Second, a monoclonal antibody which exclusively recognizes the RGD sequence at fibrinogen A alpha chain residues 572-574 abolished interaction between integrin alpha v beta 3 and fibrinogen, but had only a minimal effect on fibrinogen binding to GPIIb-IIIa. Finally, we show that the difference in recognition of sites on fibrinogen by these two integrins is probably a consequence of their remarkably different ligand binding properties. Peptides corresponding to fibrinogen gamma chain residues 400-411 effectively blocked RGD sequence and fibrinogen binding by GPIIb-IIIa, but had no effect on the ability of integrin alpha v beta 3 to bind these ligands. We also show that integrin alpha v beta 3 has a higher affinity than GPIIb-IIIa for a synthetic hexapeptide containing the RGD sequence. In fact, this RGD-containing peptide was 150-fold more effective at blocking fibrinogen binding to integrin alpha v beta 3 than to GPIIb-IIIa. Collectively, our results demonstrate that integrins alpha v beta 3 and GPIIb-IIIa display qualitative and quantitative differences in their ligand binding properties, as is evident by their ability to interact with synthetic peptides. The ultimate result of these differences is the recognition of distinct sites on fibrinogen by the two integrins. These observations may have relevance in the processes of hemostasis and wound healing.  相似文献   

5.
The binding of fibronectin (Fn) to several integrins involves the Arg-Gly-Asp (RGD) tripeptide sequence. However, linear synthetic RGD peptides do not completely mimic the cell attachment activity of intact Fn or certain large Fn fragments. This suggests that the integrin-Fn interaction involves a more extended surface of Fn than that provided by the RGD sequence. To test this possibility, three novel monoclonal anti-Fn antibodies that inhibit its binding to a purified integrin, alpha IIb beta 3, were developed. The epitopes of these three antibodies mapped to a region at least 55 residues amino-terminal of the RGD sequence. Further, recombinant fragments of Fn containing these epitopes and lacking the RGD site also inhibited the binding of Fn to purified alpha IIb beta 3. These fragments, which spanned Fn residues 1359-1436, bound to alpha IIb beta 3 in a divalent cation-dependent manner. In addition, this region of Fn bound specifically to alpha IIb beta 3 on thrombin-stimulated but not resting platelets. These results demonstrate the presence of additional sequences in Fn that interact with integrin alpha IIb beta 3 and suggest that multiple sites in Fn are involved in its recognition by this integrin.  相似文献   

6.
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.  相似文献   

7.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

8.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

9.
The amino acid sequence Arg-Gly-Asp (RGD) is highly conserved on the VP1 proteins of different serotypes and subtypes of foot-and-mouth disease virus (FMDV) and is essential for cell attachment. This sequence is also found in certain extracellular matrix proteins that bind to a family of cell surface receptors called integrins. Within the Picornaviridae family, enterovirus coxsackievirus A9 also has an RGD motif on its VP1 capsid protein and has recently been shown to utilize the vitronectin receptor integrin alpha V beta 3 as a receptor on monkey kidney cells. Competition binding experiments between type A12 FMDV and coxsackievirus A9 using BHK-21 and LLC-MK2 cells revealed shared receptor specificity between these two viruses. Polyclonal anti-serum to the vitronectin receptor and a monoclonal antibody to the alpha V subunit inhibited both FMDV binding and plaque formation, while a monoclonal antibody to the beta 3 subunit inhibited virus binding. In contrast, antibodies to the fibronectin receptor (alpha 5 beta 1) or to the integrin (alpha V beta 5) had no effect on either binding or plaque formation. These data demonstrate that the alpha V beta 3 vitronectin receptor can function as a receptor for FMDV.  相似文献   

10.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

11.
Several receptors for the extracellular matrix protein collagen have been described which belong to the superfamily of receptors collectively known as integrins. Although several integrins have been shown to interact with extracellular matrix molecules via a common recognition site, arginine-glycine-aspartic Acid (RGD), within the beta 1 integrin subfamily, only the fibronectin receptor (alpha 5 beta 1) has been convincingly shown to interact with RGD. In the present study, we tested whether a collagen receptor could interact with RGD. Adhesion of an osteosarcoma cell line, MG-63, to immobilized collagen I was inhibited by the cyclic RGD-containing peptide, C*GRGDSPC* (where C* indicates that Cys participates in disulfide), and not by the linear GRGDSP or the non-RGD-containing cyclic peptide, C*GKGESPC*. Similarly, using collagen-Sepharose affinity chromatography, a heterodimeric protein could be specifically eluted from the column by the cyclic RGD peptide. Immunoprecipitations of the eluted material with monoclonal antibodies showed reactivity with the collagen receptor alpha 2 beta 1 and not alpha 3 beta 1. Our data demonstrate that RGD peptides can interact with the collagen receptor, and the differences seen with the linear and cyclic peptide suggest that the cyclic C*GRGDSPC* has a higher avidity for the receptor than the more flexible linear GRGDSP. In this paper, we provide supportive evidence that one possible mode of collagen interaction with alpha 2 beta 1 is via the RGD recognition sequence.  相似文献   

12.
Mimetics of the RGD tripeptide are described that are potent, selective antagonists of the integrin receptor, alpha(v)beta(3). The use of the 5,6,7,8-tetrahydro[1,8]naphthyridine group as a potency-enhancing N-terminus is demonstrated. Two 3-substituted-3-amino-propionic acids previously contained in alpha(IIb)beta(3) antagonists were utilized to enhance binding affinity and functional activity for the targeted receptor. Further affinity increases were then achieved through the use of cyclic glycyl amide bond constraints.  相似文献   

13.
We have previously assigned an integrin alpha(2)beta(1)-recognition site in collagen I to the sequence, GFOGERGVEGPOGPA (O = Hyp), corresponding to residues 502-516 of the alpha(1)(I) chain and located in the fragment alpha(1)(I)CB3 (Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (1998) J. Biol. Chem. 273, 33287-33294). In this study, we show that recognition is entirely contained within the six-residue sequence GFOGER. This sequence, when in triple-helical conformation, readily supports alpha(2)beta(1)-dependent cell adhesion and exhibits divalent cation-dependent binding of isolated alpha(2)beta(1) and recombinant alpha(2) A-domain, being at least as active as the parent collagen. Replacement of E by D causes loss of recognition. The same sequence binds integrin alpha(1) A-domain and supports integrin alpha(1)beta(1)-mediated cell adhesion. Triple-helical GFOGER completely inhibits alpha(2) A-domain binding to collagens I and IV and alpha(2)beta(1)-dependent adhesion of platelets and HT 1080 cells to these collagens. It also fully inhibits alpha(1) A-domain binding to collagen I and strongly inhibits alpha(1)beta(1)-mediated adhesion of Rugli cells to this collagen but has little effect on either alpha1 A-domain binding or adhesion of Rugli cells to collagen IV. We conclude that the sequence GFOGER represents a high-affinity binding site in collagens I and IV for alpha(2)beta(1) and in collagen I for alpha(1)beta(1). Other high-affinity sites in collagen IV mediate its recognition of alpha(1)beta(1).  相似文献   

14.
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3.  相似文献   

15.
The integrin alpha(9)beta(1) mediates cell adhesion to tenascin-C and VCAM-1 by binding to sequences distinct from the common integrin-recognition sequence, arginine-glycine-aspartic acid (RGD). A thrombin-cleaved NH(2)-terminal fragment of osteopontin containing the RGD sequence has recently been shown to also be a ligand for alpha(9)beta(1). In this report, we used site-directed mutagenesis and synthetic peptides to identify the alpha(9)beta(1) recognition sequence in osteopontin. alpha(9)-transfected SW480, Chinese hamster ovary, and L-cells adhered to a recombinant NH(2)-terminal osteopontin fragment in which the RGD site was mutated to RAA (nOPN-RAA). Adhesion was completely inhibited by anti-alpha(9) monoclonal antibody Y9A2, indicating the presence of a non-RGD alpha(9)beta(1) recognition sequence within this fragment. Alanine substitution mutagenesis of 13 additional conserved negatively charged amino acid residues in this fragment had no effect on alpha(9)beta(1)-mediated adhesion, but adhesion was dramatically inhibited by either alanine substitution or deletion of tyrosine 165. A synthetic peptide, SVVYGLR, corresponding to the sequence surrounding Tyr(165), blocked alpha(9)beta(1)-mediated adhesion to nOPN-RAA and exposed a ligand-binding-dependent epitope on the integrin beta(1) subunit on alpha(9)-transfected, but not on mock-transfected cells. These results demonstrate that the linear sequence SVVYGLR directly binds to alpha(9)beta(1) and is responsible for alpha(9)beta(1)-mediated cell adhesion to the NH(2)-terminal fragment of osteopontin.  相似文献   

16.
Three amino acids residues, Arg-Gly-Asp (RGD), in vitronectin and fibronectin show affinity for alpha(V)beta(3) integrins expressed in vascular endothelial cells. That tumor growth can upregulate the expression of these integrins on tumor cells for invasion and metastasis and in tissue neovasculature suggests the potential of developing radiolabeled RGD peptides as antagonists of alpha(V)beta(3) integrins for broad spectrum tumor specific imaging. The polypeptide RGD-4C, which contains four cysteine residues for cyclization, has shown preferential localization on integrins at sites of tumor angiogenesis. Both RGD-4C and RGE (Arg-Gly-Glu)-4C (as control) were purchased and conjugated with 6-hydrazinopyridine-3-carboxylic acid (HYNIC) for 99mTc radiolabeling. After purification of the conjugated peptides by a C18 Sep-Pak cartridge with 20% methanol, both peptides were radiolabeled using tricine. For cell binding studies, both 99mTc peptides were further purified by SE HPLC. High specific radioactivity of labeled cyclized RGD/E (cyclized RGD/E will be simplified as RGD/E through out the text) of about 20 Ci/micromol was achieved. Both 99mTc complexes were stable in the labeling solution for over 24 h at room temperature. In the human umbilical vein endothelial (HUVE) cell studies, the binding at 1 h of radiolabeled RGD/E was determined at 4 degrees C and at concentrations in the picomolar to nanomolar range. Under these conditions, cell accumulation of 99mTc in the case of RGD was as much as 16 times greater than the control RGE. As a check on specificity, 7 nM of native cyclized RGD blocked 50% of the binding of 99mTc-labeled RGD to cells. The binding percentage of 99mTc-labeled RGD to purified alpha(V)beta(3) integrin protein, as determined by SE HPLC, increased with the concentration of the integrin while 99mTc-labeled RGE showed no binding. The association constant for 99mTc-RGD was modest at 7 x 10(6) M(-)(1). In both human renal adenocarcinoma (ACHN) and human colon cancer cell line (LS174T) nude mouse tumor models, the accumulation of 99mTc-labeled RGD/E exhibited no statistical difference. In conclusion, possibly because of limited numbers of alpha(V)beta(3) integrin receptors per tumor cell and low binding affinity, radiolabeled RGD peptides may have limitations as tumor imaging agents.  相似文献   

17.
Fertilin beta (also known as ADAM2), a mammalian sperm protein that mediates gamete cell adhesion during fertilization, is a member of the ADAM protein family whose members have disintegrin domains with homology to integrin ligands found in snake venoms. Fertilin beta utilizes an ECD sequence within its disintegrin domain to interact with the egg plasma membrane; the Asp is especially critical. Based on what is known about different integrin subfamilies and their ligands, we sought to characterize fertilin beta binding sites on mouse eggs, focusing on integrin subfamilies that recognize short peptide sequences that include an Asp residue: the alpha(5)/alpha(8)/alpha(v)/alpha(IIb) or RGD-binding subfamily (alpha(5)beta(1), alpha(8)beta(1), alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), alpha(V)beta(6), alpha(V)beta(8), and alpha(IIb)beta(3)) and the alpha(4)/alpha(9) subfamily (alpha(4)beta(1), alpha(9)beta(1), and alpha(4)beta(7)). We tested peptide sequences known to perturb interactions mediated by these integrins in two different assays for fertilin beta binding. Peptides with the sequence MLDG, which perturb alpha(4)/alpha(9) integrin-mediated interactions, significantly inhibit fertilin beta binding to eggs, which suggests a role for a member of this integrin subfamily as a fertilin beta receptor. RGD peptides, which perturb alpha(5)/alpha(8)/alpha(v)/alpha(IIb) integrin-mediated interactions, have partial inhibitory activity. The anti-alpha(6) antibody GoH3 has little or no inhibitory activity. An antibody to the integrin-associated tetraspanin protein CD9 inhibits the binding of a multivalent presentation of fertilin beta (immobilized on beads) but not soluble fertilin beta, which we speculate has implications for the role of CD9 in the strengthening of fertilin beta-mediated cell adhesion but not in initial ligand binding.  相似文献   

18.
Rieder E  Henry T  Duque H  Baxt B 《Journal of virology》2005,79(20):12989-12998
Foot-and-mouth disease virus (FMDV) initiates infection by binding to integrin receptors via an Arg-Gly-Asp (RGD) sequence found in the G-H loop of the structural protein VP1. Following serial passages of a type A(24) Cruzeiro virus (A(24)Cru) in bovine, via tongue inoculation, a virus was generated which contained an SGD sequence in the cell receptor-binding site and expressed a turbid plaque phenotype in BHK-21 cells. Propagation of this virus in these cells resulted in the rapid selection of viruses that grew to higher titers, produced clear plaques, and now contained an RGD sequence in place of the original SGD. To study the role of the SGD sequence in FMDV receptor recognition and bovine virulence, we assembled an infectious cDNA clone of an RGD-containing A(24)Cru and derived mutant clones containing either SGD with a single nucleotide substitution in the R(144) codon or double substitutions at this position to prevent mutation of the S to an R. The SGD viruses grew poorly in BHK-21 cells and stably maintained the sequence during propagation in BHK-21 cells expressing the bovine alpha(V)beta(6) integrin (BHK3-alpha(V)beta(6)), as well as in experimentally infected and contact steers. While all the SGD-containing viruses used only the bovine alpha(V)beta(6) integrin as a cellular receptor with relatively high efficiency, the revertant RGD viruses utilized either the alpha(V)beta(1) or alpha(V)beta(3) bovine integrins with higher efficiency than alpha(V)beta(6) and grew well in BHK-21 cells. Replacing the R at the -1 SGD position with either K or E showed that this residue did not contribute to integrin utilization in vitro. These results illustrate the rapid evolution of FMDV with alteration in receptor specificity and suggest that viruses with sequences other than RGD, but closely related to it, can still infect via integrin receptors and induce and transmit the disease to susceptible animals.  相似文献   

19.
The alpha(L) I (inserted or interactive) domain of integrin alpha(L)beta(2) undergoes conformational changes upon activation. Recent studies show that the isolated, activated alpha(L) I domain is sufficient for strong ligand binding, suggesting the beta(2) subunit to be only indirectly involved. It has been unclear whether the activity of the alpha(L) I domain is regulated by the beta(2) subunit. In this study, we demonstrate that swapping the disulfide-linked CPNKEKEC sequence (residues 169-176) in the beta(2) I domain with a corresponding beta(3) sequence, or mutating Lys(174) to Thr, constitutively activates alpha(L)beta(2) binding to ICAM-1. These mutants do not require Mn(2+) for ICAM-1 binding and are insensitive to the inhibitory effect of Ca(2+). We have also localized a component of the mAb 24 epitope (a reporter of beta(2) integrin activation) in the CPNKEKEC sequence. Glu(173) and Glu(175) of the beta(2) I domain are identified as critical for mAb 24 binding. Because the epitope is highly expressed upon beta(2) integrin activation, it is likely that the CPNKEKEC sequence is exposed or undergoes conformational changes upon activation. Deletion of the alpha(L) I domain did not eliminate the mAb 24 epitope. This confirms that the alpha(L) I domain is not critical for mAb 24 binding, and indicates that mAb 24 detects a change expressed in part in the beta(2) subunit I domain. These results suggest that the CPNKEKEC sequence of the beta(2) I domain is involved in regulating the alpha(L) I domain.  相似文献   

20.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号