首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Activated sludge acclimated to biodegrade phenol was allowed to attach on and in light porous ceramic carriers and to function as a biofilm in a photolytic circulating-bed bioreactor (PCBBR). Phenol degradation in the PCBBR was investigated following three protocols: photolysis with ultraviolet light alone (P), biodegradation alone (B), and the two mechanisms operating simultaneously (P/B). Phenol was degraded at approximately equal rates by B and P/B, each of which was much faster than the rate by P. Furthermore, phenol was mineralized to a significantly greater extent with P/B than with either P or B. SEM showed that the biofilm survived well inside macropores that presumably shaded the microorganisms from UV irradiation, even though the UV light greatly reduced biofilm on outer surface of the carriers in the P/B experiments. Rapid biodegradation of phenol, enhanced mineralization, and survival of bacteria inside macropores demonstrated that being in a biofilm inside the porous carriers protected the bacteria from UV-light toxicity, allowing intimate coupling of photolysis and biodegradation.  相似文献   

2.
Decolorization and mineralization of reactive dyes by intimately coupled TiO2‐photocatalysis and biodegradation (ICPB) on a novel TiO2‐coated biofilm carrier were investigated in a photocatalytic circulating‐bed biofilm reactor (PCBBR). Two typical reactive dyes—Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86)—showed similar first‐order kinetics when being photocatalytically decolorized at low pH (~4–5) in batch experiments. Photocatalytic decolorization was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on TiO2, radical scavenging by phosphate or carbonate, or both. Therefore, continuous PCBBR experiments were carried out at a low pH (~4.5) to maintain high photocatalytic efficiency. In the PCBBR, photocatalysis alone with TiO2‐coated carriers could remove target compound RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. ICPB was further proven by finding microorganisms inside carriers at the end of the PCBBR experiments. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD, while most of the nitrogen in the azo‐bonds (? N?N? ) was oxidized to N2. Biotechnol. Bioeng. 2012; 109:884–893. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Coupling advanced oxidative pretreatment with subsequent biodegradation demonstrates potential for treating wastewaters containing biorecalcitrant and inhibitory organic constituents. However, advanced oxidation is indiscriminate, producing a range of products that can be too oxidized, unavailable for biodegradation, or toxic themselves. This problem could be overcome if advanced oxidation and biodegradation occurred together, an orientation called intimate coupling; then, biodegradable organics are removed as they are formed, focusing the chemical oxidant on the non-biodegradable fraction. Intimate coupling has seemed impossible because the conditions of advanced oxidation, for example, hydroxyl radicals and sometimes UV-light, are severely toxic to microorganisms. Here, we demonstrate that a novel photocatalytic circulating-bed biofilm reactor (PCBBR), which utilizes macro-porous carriers to protect biofilm from toxic reactants and UV light, achieves intimate coupling. We demonstrate the viability of the PCBBR system first with UV only and acetate, where the carriers grew biofilm and sustained acetate biodegradation despite continuous UV irradiation. Images obtained by scanning electron microscopy and confocal laser scanning microscopy show bacteria living behind the exposed surface of the cubes. Second, we used slurry-form Degussa P25 TiO2 to initiate photocatalysis of inhibitory 2,4,5-trichlorophenol (TCP) and acetate. With no bacterial carriers, photocatalysis and physical processes removed TCP and COD to 32% and 26% of their influent levels, but addition of biofilm carriers decreased residuals to 2% and 4%, respectively. Biodegradation alone could not remove TCP. Photomicrographs clearly show that biomass originally on the exterior of the carriers was oxidized (charred), but biofilm a short distance within the carriers was protected. Finally, we coated TiO2 directly onto the carrier surface, producing a hybrid photocatalytic-biological carrier. These carriers likewise demonstrated the concept of photocatalytic degradation of TCP coupled with biodegradation of acetate, but continued TCP degradation required augmentation with slurry-form TiO2.  相似文献   

4.
球形红细菌厌氧降解2,4-二硝基甲苯   总被引:2,自引:0,他引:2  
【目的】研究不同环境条件对2,4-二硝基甲苯(2,4-DNT)生物降解的影响。【方法】采用光合细菌球形红细菌在温度为30 °C的光照培养箱中厌氧降解2,4-DNT,并用高效液相色谱仪测定其浓度。【结果】去除2,4-DNT的最佳条件是初始浓度40 mg/L、初始pH 7.0和接种量15%。另外,2,4-DNT在菌体延滞期被细胞吸收,然后在指数期作为碳源被降解。2,4-DNT的去除率在72 h达到98.8%。从液相色谱图中观察到有2种中间代谢产物,但在120 h内产物被逐渐降解。2,4-DNT的去除动力学符合一级速率模型。【结论】不同条件下2,4-DNT的去除率表明球形红细菌能有效降解2,4-DNT。  相似文献   

5.
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.  相似文献   

6.
We previously reported on the mineralization of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in an aerobic fluidized-bed bioreactor (FBBR) (Lendenmann et al. 1998 Environ Sci Technol 32:82-87). The current study examines the kinetics of 2, 4-DNT and 2,6-DNT mineralization at increasing loading rates in the FBBR with the goal of obtaining system-independent kinetic parameters. At each steady state, the FBBR was subjected to a set of transient load experiments in which substrate flux in the biofilm and bulk substrate concentrations were measured. The pseudo-steady-state data were used to estimate the biokinetic parameters for 2,4-DNT and 2,6-DNT removal using a mechanistic mathematical biofilm model and a routine that minimized the sum of the squared residuals (RSS). Estimated kinetic parameters varied slightly for each steady-state; retrieved parameters for qm were 0. 83 to 0.98 g DNT/g XCOD d for 2,4-DNT removal and 0.14 to 0.33 g DNT/g XCOD d for 2,6-DNT removal. Ks values for 2,4-DNT removal (0. 029 to 0.36 g DNT/m3) were consistently lower than Ks values for 2, 6-DNT removal (0.21 to 0.84 g DNT/m3). A new approach was introduced to estimate the fundamental biofilm kinetic parameter S*b,min from steady-state performance information. Values of S*b,min indicated that the FBBR performance was limited by growth potential. Adequate performance of the examined FBBR technology at higher loading rates will depend on an improvement in the growth potential. The obtained kinetic parameters, qm, Ks, and S*b,min, can be used to aid in the design of aerobic FBBRs treating waters containing DNT mixtures.  相似文献   

7.
A BSTRACTThis study demonstrates microbial community changes over time in a nitroaromatic-contaminated groundwater upon amendment with hydrocarbons previously unknown to the microbial community (extrinsic) and hydrocarbons previously known to the microbial community (intrinsic). Sealed flasks, shaken and incubated at 25 degrees C, containing contaminated groundwater and salts were amended twice with extrinsic hydrocarbons including phenol, benzoic acid, and naphthalene, and intrinsic hydrocarbons including 2,4-dinitrotoluene (2,4-DNT) and para-nitrotoluene ( p-NT). Microbial growth, biodegradation, and community structure changes measured by random amplified polymorphic DNA (RAPD) and quantitative PCR (qPCR) targeting catechol-2,3-dioxygenase (C23O) genes were monitored over time. All amended substrates were biodegraded after both substrate amendments except for 2,4-DNT, which was only partially degraded after the second amendment. Unique microbial communities were developed in flasks amended with phenol, benzoic acid, and naphthalene. However, in the flasks amended with intrinsic hydrocarbons the microbial community remained similar to the unamended control flasks. The relative amount of C23O genes detected by qPCR correlated with the biodegradation of phenol and naphthalene but not with 2,4-DNT. The results showed that a selection for microorganisms capable of catabolizing extrinsic hydrocarbons naturally and initially present in the nitroaromatic-contaminated groundwater occurred. However, growth-linked biodegradation of added intrinsic hydrocarbons was not selective.  相似文献   

8.
The extensive use of phenol compounds and the inability to remove these compounds during wastewater treatment have resulted in the widespread occurrence of phenols in the natural environment. Phenols have been linked to serious risks to human and environmental health. Hence, the need to develop technologies that can effectively remove phenols from wastewater and source waters is a pressing challenge. In this study, light ceramic particles were immersed in activated sludge acclimated to degrade phenol, and microorganisms were allowed to attach to the particles surface to form biofilm. Then the ceramic particles with biofilm were moved into the photolytic circulating-bed biofilm reactor made of quartz glass, which was used for the degradation of phenol by three protocols: photolysis with UV light alone (P), biodegradation alone (B), and the two mechanisms operating simultaneously (photobiodegradation, P&B). The experimental results indicated that phenol removal rate was quickest by B experiment. However, P&B experiment gave more complete mineralization of phenol than that by other protocols. During P&B experiment, the microorganisms grown on porous ceramic carrier still kept the bioactivity degrading phenol, even under UV light irradiation. However, the dominant members of the bacterial community changed dramatically after the intimately coupled photobiodegradation, according to molecular biological analysis to the biofilm. Whereas Beijerinckia sp. was the dominant strain in the inoculum, it was replaced by Thauera sp. MZ1T that played a main role on degrading phenol during P&B experiment.  相似文献   

9.
UV photolysis for accelerated quinoline biodegradation and mineralization   总被引:1,自引:0,他引:1  
Sequentially and intimately coupled photolysis with biodegradation were evaluated for their ability to accelerate quinoline-removal and quinoline-mineralization kinetics. UV photolysis sequentially coupled to biodegradation significantly improved biomass-growth kinetics, which could be represented well by the Aiba self-inhibition model: UV photolysis increased the maximum specific growth rate (μ max) by 15 %, and the inhibition constant (K SI) doubled. An internal loop photo-biodegradation reactor (ILPBR) was used to realize intimately coupled photolysis with biodegradation. The ILPBR was operated with batch experiments following three protocols: photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B). For P&B, the maximum quinoline removal rate (r max) increased by 9 %, K SI increased by 17 %, and the half-maximum-rate concentration (K S) decreased by 55 %, compared to B; the composite result was a doubling of the quinoline-biodegradation rate for most of the concentration range tested. The degree of mineralization was increased by both forms of photolysis coupled to biodegradation, and the impact was greater for intimate coupling (18 % increase) than sequential coupling (5 %). The benefits of UV photolysis were greater with intimate coupling than with sequential coupling due to parallel transformation by biodegradation and photolysis.  相似文献   

10.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

11.
Aminonitrotoluenes form rapidly from the reduction of dinitrotoluenes (DNTs) which are priority pollutants and animal carcinogens. For example, 4-amino-2-nitrotoluene (4A2NT) and 2A4NT accumulate from the reduction of 2,4-DNT during its aerobic biodegradation. Here, we show that 2,4-DNT dioxygenase (DDO) from Burkholderia sp. strain DNT oxidizes the aminonitrotoluenes 2A3NT, 2A6NT, 4A3NT, and 5A2NT to 2-amino-3-nitrobenzylalcohol, 2-amino-4-nitro-m-cresol and 3-amino-5-nitro-p-cresol, 4-amino-3-nitrobenzylalcohol and aminonitrocresol, and 2-amino-5-nitro-o-cresol, respectively. 2A5NT and 3A4NT are oxidized to aminonitrocresols and/or aminonitrobenzylalcohols, and 4A2NT is oxidized to aminonitrocresol. Only 2A4NT, a reduced compound derived from 2,4-DNT, was not oxidized by DDO or its three variants. The alpha subunit mutation I204Y resulted in two to fourfold faster oxidization of the aminonitrotoluenes. Though these enzymes are dioxygenases, they acted like monooxygenases by adding a single hydroxyl group, which did not result in the release of nitrite.  相似文献   

12.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2, 4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2, 6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2, 4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

13.
Transformation of 2,4-dinitrotoluene (2,4-DNT) by Alcaligenes JS867 undervarying degrees of oxygen limitation was examined. Complete 2,4-DNT removalwas observed under oxygen excess with near stoichiometric release (83%) of nitrite.Average kinetic parameters were estimated based on a dual-Monod biokinetic modelwith 2,4-DNT and O2 as growth limiting substrates. The negative impact of nitrite accumulation on the reaction rate was adequately described by inclusion of a noncompetitive inhibition term for NO2 -. Under aerobic conditions, max, KsDNT, andKiNO were 0.058(0.004) hr-1, 3.3(±1.3) mg 2,4-DNT/L, and 1.2(±pm0.2) hr-1, respectively. At increasing oxygen limitation, rates of 2,4-DNT disappearance and nitrite production decreased and incomplete removal of 2,4-DNT commenced. JS867 was able to use NO2 - as a terminal electron acceptor whengrown on glucose or succinate under anaerobic conditions. However, during growthon 2,4-DNT and under O2-limited conditions, JS867 did not use released nitrite as electron acceptor. The nearly constant molar ratios of DNT removed over NO2 - released under various degrees of oxygen limitation suggested that oxygenolytic denitration pathways continued. No evidence of nitroreduction was obtained under the examined oligotrophic conditions. JS867 displayed a high affinity for oxygen consumption with KSO2 value of 0.285(±0.198) mg O2/L. Our results indicate thatunder oligotrophic conditions with 2,4-DNT as dominant carbon source, oxygen availability and nitrite accumulation may limit 2,4-DNT biomineralization, but the accumulation of reduced 2,4-DNT transformation products will be small.  相似文献   

14.
Basic knowledge of the plant transformation pathways and toxicity of 2,4-dinitrotoluene (2,4-DNT) will assist in the design and assessment of a phytoremediation strategy. This study presents the toxicity and fate of 2,4-DNT and gene expression in response to 2,4-DNT exposure using the model plant Arabidopsis thaliana, an increasingly popular system for genetic and biochemical studies of phytotransformation of explosives. From the results of biomass and root growth assays for toxicity, 2,4-DNT was toxic to the plants at concentrations as low as 1 mg/L. In the uptake study, 95% of the initial 2,4-DNT was removed by 15-day-old seedlings from liquid media regardless of the initial 2,4-DNT concentrations while 30% accounted for the adsorption to the autoclaved plant materials. The mass balance was over 86% using [U-14C]2,4-DNT, and the mineralization by the plants was less than 1% under sterile conditions during 14 days of exposure. The percentage of the bound radioactivity increased from 49% to 72% of the radioactivity in the plants, suggesting transformed products of 2,4-DNT may be incorporated into plant tissues such as lignin and cellulose. Monoaminonitrotoluene isomers and unknown metabolites with short retention times were detected as transformed products of 2,4-DNT by the plants. Most (68%) of the radioactivity taken up by the plants was in the root tissues in nonsterile hydroponic cultures. Glutathione and expression of related genes (GSH1 and GSH2) in plants exposed to 2,4-DNT were 1.7-fold increased compared to untreated plants. Genes of a glutathione S-transferase and a cytochrome P450, which were induced by 2,4,6-trinitrotoluene exposure in previous studies, were upregulated by 10- and 8-fold, respectively. The application of phytoremediation and the development of transgenic plants for 2,4-DNT may be based on TNT phytotransformation pathway characteristics because of the similar fate and gene expression in plants.  相似文献   

15.
The products detected in the incubation of 2,4-dinitrotoluene (2,4-DNT) with Salmonella typhimurium strains TA98 and TA98/1,8-DNP6 were nitrosonitrotoluenes, hydroxylaminonitrotoluenes, aminonitrotoluenes and dimethyl dinitroazoxybenzene. The capacity of TA98NR to reduce 2,4-DNT was much lower than that of TA98 and TA98/1,8-DNP6. The bacterial products showed no mutagenic activity in the Ames assay using TA98 and TA100. These results indicate that the lack of mutagenic activity of 2,4-DNT is not due to low reductive metabolism of 2,4-DNT by the bacteria, but to the lack of mutagenic activity of the bacterial reductive products of 2,4-DNT, including dimethyl dinitroazoxybenzene.  相似文献   

16.
The influence of the conditions of the formation of genipin cross-linked chitosan cryostructurates on the porous morphology and physicochemical properties of these cryostructurates and on the possibility of their use as biopolymer 3D scaffolds for tissue engineering was studied. The chitosan cryostructurates were obtained by freeze-drying a chitosan acetate solution, treating the resulting sponge with an alcohol solution of ammonia to transform the polyaminosaccharide from a salt into a chitosan-base, and then cross-linking the polymer with genipin (the molar ratios of genipin to the number of chitosan amino groups were 0.05, 0.033, and 0.02, respectively). The pore sizes, water-holding capacity, and in vitro biodegradation rate of the cryostructurates were shown to depend on the aforementioned ratio. The properties of the prepared chitosan cryostructurates, the hydrogels formed by chitosan cross-linking with genipin at positive temperatures, and the films cast from genipin-containing chitosan solutions after solvent evaporation were studied and compared. The biocompatibility of the obtained macroporous sponge materials was demonstrated using L929 mouse fibroblasts. Confocal laser microscopy showed that the cells in all of the 3D scaffolds obtained were evenly distributed; they grew and proliferated when cultured in vitro for seven days.  相似文献   

17.
Sequential photo- and biodegradation of p-cresol was studied using a mercury lamp, as well as KrCl and XeCl excilamps. Preirradiation of p-cresol at a concentration of 10(-4) M did not affect the rate of its subsequent biodegradation. An increase in the concentration of p-cresol to 10(-3) M and in the duration preliminary UV irradiation inhibited subsequent biodegradation. Biodegradation of p-cresol was accompanied by the formation of a product with a fluorescence maximum at 365 nm (lambdaex 280 nm), and photodegradation yielded a compound fluorescing at 400 nm (lambdaex 330 nm). Sequential UV and biodegradation led to the appearance of bands in the fluorescence spectra that were ascribed to p-cresol and its photolysis products. It was shown that sequential use of biological and photochemical degradation results in degradation of not only the initial toxicant but also the metabolites formed during its biodegradation.  相似文献   

18.
Nitroaromatic compounds are toxic and potential carcinogens. In this study, a drop assay was used to detect chemotaxis toward nitroaromatic compounds for wild-type Burkholderia cepacia R34, wild-type Burkholderia sp. strain DNT, and a 2,4-dinitrotoluene (2,4-DNT) dioxygenase mutant strain (S5). The three strains are chemotactic toward 2,4,6-trinitrotoluene (TNT), 2,3-DNT, 2,4-DNT, 2,5-DNT, 2-nitrotoluene (NT), 4NT, and 4-methyl-5-nitrocatechol (4M5NC), but not toward 2,6-DNT. Of these, only 2,4-DNT is a carbon and energy source for B. cepacia R34 and Burkholderia sp. strain DNT, and 4M5NC is an intermediate in the 2,4-DNT degradation pathway. It was determined that the 2,4-DNT dioxygenase genes are not required for the chemotaxis for these nitroaromatic compounds because the DNT DDO mutant S5 has a chemotactic response toward 2,4-DNT although 2,4-DNT is not metabolized by S5; hence, 2,4-DNT itself is the chemoattractant. This is the first report of chemotaxis toward TNT, 2,3-DNT, 2,4-DNT, 2,5-DNT, 2NT, 4NT, and 4M5NC.  相似文献   

19.
《Process Biochemistry》2010,45(6):993-1001
The combined process of immobilized microorganism-biological filter was used to degrade TNT in an aqueous solution. The results showed that the process could effectively degrade TNT, which was not detected in the effluent of the system. GC/MS analysis identified 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2,4-diamino-6-nitrotoluene (2,6-DA-4-NT) as the main anaerobic degradation products. In addition, the Haldane model successfully described the anaerobic degradation of TNT with high correlation coefficients (R2 = 0.9803). As the electron donor, ethanol played a major role in the TNT biodegradation. More than twice the theoretical requirement of ethanol was necessary to achieve a high TNT degradation rate (above 97.5%). Moreover, Environment Scan Electron Microscope (ESEM) analysis revealed that a large number of globular microorganisms were successfully immobilized on the surface of the carrier. Further analysis by Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated that the special bacterial for TNT degradation may have generated during the domestication with TNT for 150 days. The dominant species for TNT degradation were identified by comparing gene sequences with Genebank.  相似文献   

20.
Three methods, i.e. bioremediation by application of bacteria-laden agar, physical absorption of DNT by agar, or illumination by UV light were evaluated for the removal of 2,4-dinitrotoluene (DNT) from building-grade concrete. DNT biodegradation by Pseudomonas putida TOD was turned "on" and "off" by using toluene as a co-substrate thus allowing for rate-limiting step assessment. Bioremediation efficiency can be > 95-97% in 5-7 d if the process occurs at optimum growth temperature with the biological processes appearing to be rate-limiting. Sterile agar can remove up to 80% of DNT from concrete thus allowing DNT desorption and biodegradation to be conducted separately. Photoremediation results in 50% DNT removal in 9-12 d with no further removal, most likely due to mass transfer limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号