首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   27篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   7篇
  2018年   12篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   10篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1954年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
1.
A new model, CCBATCH, comprehensively couples microbially catalyzed reactions to aqueous geochemistry. The effect of aqueous speciation on biodegradation reactions and the effect of biological reactions on the concentration of chemical species (e.g. H2CO3, NH 4 + , O2) are explicitly included in CCBATCH, allowing systematic investigation of kinetically controlled biological reactions. Bulk-phase chemical speciation reactions including acid/base and complexation are modeled as thermodynamically controlled, while biological reactions are modeled as kinetically controlled. A dual-Monod kinetic formulation for biological degradation reactions is coupled with stoichiometry for the degradation reaction to predict the rate of change of all biological and chemical species affected by the biological reactions. The capability of CCBATCH to capture pH and speciation effects on biological reactions is demonstrated by a series of modeling examples for the citrate/Fe(III) system. pH controls the concentration of potentially biologically available forms of citrate. When the percentage of the degradable substrate is low due to complexation or acid/base speciation, degradation rates may be slow despite high concentrations of substrate Complexation reactions that sequester substratein non-degradable forms may prevent degradation or stopdegradation reactions prior to complete substrate utilization. The capability of CCBATCH to couple aqueous speciation changes to biodegradation reaction kinetics and stoichiometry allows prediction of these key behaviors in mixed metal/chelate systems.  相似文献   
2.
Biotransformation of 2-chlorophenol by a methanogenic sediment community resulted in the transient accumulation of phenol and benzoate. 3-Chlorobenzoate was a more persistent product of 2-chlorophenol metabolism. The anaerobic biotransformation of phenol to benzoate presumably occurred via para-carboxylation and dehydroxylation reactions, which may also explain the observed conversion of 2-chlorophenol to 3-chlorobenzoate.  相似文献   
3.
4.
In photobioreactors and natural systems, microalgae are subjected to rapidly changing light intensities (LI) due to light attenuation and mixing. A controlled way to study the effect of rapidly changing LI is to subject cultures to flashing light. In this study, series of flashing-light experiments were conducted using Synechocystis sp. PCC6803 with constant overall average LI of approximately 84 μmol·m−2·s−1 and relative times in the light and dark varied. The results were also compared with simulated results using a mathematical model including an absorbed pool of light energy, photoacclimation, and photoinhibition. With equal time in light and dark, the specific growth rate (μ) systematically decreased with increasing light duration, and µ decreased further when the ratio of light to dark was decreased. The model captured both trends with the mechanistic explanation that when the light duration was very short the changes in the pool of absorbed LI were smoothed out across the light and dark periods, whereas longer durations caused the biomass to experience discrete light and dark conditions that lead to reduced light absorption, more energy loss to nonphotochemical quenching, and more photodamage. These growth effects were accentuated as the ratio of light to dark decreased.  相似文献   
5.
We demonstrate that the coulombic efficiency (CE) of a microbial electrolytic cell (MEC) fueled with a fermentable substrate, ethanol, depended on the interactions among anode respiring bacteria (ARB) and other groups of micro‐organisms, particularly fermenters and methanogens. When we allowed methanogenesis, we obtained a CE of 60%, and 26% of the electrons were lost as methane. The only methanogenic genus detected by quantitative real‐time PCR was the hydrogenotrophic genus, Methanobacteriales, which presumably consumed all the hydrogen produced during ethanol fermentation (~30% of total electrons). We did not detect acetoclastic methanogenic genera, indicating that acetate‐oxidizing ARB out‐competed acetoclastic methanogens. Current production and methane formation increased in parallel, suggesting a syntrophic interaction between methanogens and acetate‐consuming ARB. When we inhibited methanogenesis with 50 mM 2‐bromoethane sulfonic acid (BES), the CE increased to 84%, and methane was not produced. With no methanogenesis, the electrons from hydrogen were converted to electrical current, either directly by the ARB or channeled to acetate through homo‐acetogenesis. This illustrates the key role of competition among the various H2 scavengers and that, when the hydrogen‐consuming methanogens were present, they out‐competed the other groups. These findings also demonstrate the importance of a three‐way syntrophic relationship among fermenters, acetate‐consuming ARB, and a H2 consumer during the utilization of a fermentable substrate. To obtain high coulombic efficiencies with fermentable substrates in a mixed population, methanogens must be suppressed to promote new interactions at the anode that ultimately channel the electrons from hydrogen to current. Biotechnol. Bioeng. 2009;103: 513–523. © 2009 Wiley Periodicals, Inc.  相似文献   
6.
In this review, we summarise recent studies that purposefully employed dynamic conditions, such as shifts, pulses, ramps and oscillations, for fast physiological strain characterisation and bioprocess development. We show the broad applicability of dynamic conditions and the various objectives that can thereby be investigated in a short time. Dynamic processes reveal information about the analysed system faster than traditional strategies, like continuous cultivations, as process parameters can directly be linked to platform and product parameters. Furthermore, we demonstrate that dynamic operations can result in increased productivity and high product quality, making this strategy a valuable tool for bioprocess development. With this review, we would like to encourage bioprocess engineers to an increased use of dynamic conditions in bioprocess development.  相似文献   
7.
This work presents a multispecies biofilm model that describes the co‐existence of nitrate‐ and sulfate‐reducing bacteria in the H2‐based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate‐reducing bacteria that use H2 as their electron donor. To evaluate the model, the simulated effluent H2, UAP (substrate‐utilization‐associated products), and BAP (biomass‐associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real‐time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate‐reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction. Biotechnol. Bioeng. 2013; 110: 763–772. © 2012 Wiley Periodicals, Inc.  相似文献   
8.
Phenol was investigated for the ability of TiO2 photocatalysis to increase its bioavailability as an electron donor for denitrification. The rate of nitrate removal by denitrification was increased by up to 2.6-fold by exposing phenol to photocatalysis for 30 min, although the rate decreased with increasing photocatalysis. The increased denitrification rate appeared to be associated with the photocatalytic production of carboxylic acids, but the slow down correlated to the production of catechol and hydroquinone.  相似文献   
9.
The response of a complex methanogenic sediment community to 2-chlorophenol (2-CP) was evaluated by monitoring the concentrations of this model contaminant and important metabolic intermediates and products and by using rRNA-targeted probes to track several microbial populations. Key relationships between the evolving population structure, formation of metabolic intermediates, and contaminant mineralization were identified. The nature of these relationships was intrinsically linked to the metabolism of benzoate, an intermediate that transiently accumulated during the mineralization of 2-CP. Before the onset of benzoate fermentation, reductive dehalogenation of 2-CP competed with methanogenesis for endogenous reducing equivalents. This suppressed H2 levels, methane production, and archaeal small-subunit (SSU)-rRNA concentrations in the sediment community. The concentrations of bacterial SSU rRNA, including SSU rRNA derived from “Desulfovibrionaceae” populations, tracked with 2-CP levels, presumably reflecting changes in the activity of dehalogenating organisms. After the onset of benzoate fermentation, the abundance of Syntrophus-like SSU rRNA increased, presumably because these syntrophic organisms fermented benzoate to methanogenic substrates. Consequently, although the parent substrate 2-CP served as an electron acceptor, cleavage of its aromatic nucleus also influenced the sediment community by releasing the electron donors H2 and acetate. Increased methane production and archaeal SSU-rRNA levels, which tracked with the Syntrophus-like SSU-rRNA concentrations, revealed that methanogenic populations in particular benefited from the input of reducing equivalents derived from 2-CP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号