首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
程丽芳  沐万孟  张涛  江波 《微生物学通报》2008,35(10):1626-1632
L-阿拉伯糖异构酶(L-AI)能分别催化L-阿拉伯糖和D-半乳糖异构为L-核酮糖和D-塔格糖,它是目前生物法生产新型功能性因子D-塔格糖最为有效的酶.近年来,L-AI的结构已被揭晓,其基因已获得克隆、测序和过量表达,经过蛋白质工程改造的L-AI将是未来工业化生产D-塔格糖的主要用酶.本文综述了近年来国外对L-AI的结构与功能、催化机理、酶学性质及应用于D-塔格糖生产方面的研究状况,并展望了其发展前景.  相似文献   

2.
木糖异构酶的结构及蛋白质工程肖亚中,伍传金,崔涛(中国科学技术大学生物系合肥230026)关键词木糖异构酶,结构与功能,蛋白质工程木糖异构梅(D-XyloseIsomerase,EC5。3。1。5,下简称XI)催化五碳D-木糖转化为D-木酮糖,在体外亦能催化六碳D-葡萄糖至D-果糖的异构化反应[1,2]。该反应是工业上大规模以淀粉制备高果糖浆的关键步骤[3],故习惯上将木糖异构酶称为葡萄糖异构酶 。  相似文献   

3.
目的: 从高温温泉宏基因组中挖掘能够高效催化合成稀有糖的新耐高温D-来苏糖异构酶。方法: 从云南昌宁鸡飞温泉底泥中提取宏基因组DNA并进行高通量测序,经基因注释及序列比对鉴定D-来苏糖异构酶基因,构建大肠杆菌异源表达载体并诱导表达,通过亲和层析纯化重组蛋白并对其性质研究。结果: 从温泉底泥宏基因组测序结果中鉴定得到8个D-来苏糖异构酶基因,选择4个基因进行异源表达,其中JF-LI1和JF-LI4在大肠杆菌中成功表达并检测到酶活性。研究表明,JF-LI1和JF-LI4的最适温度分别为70℃和75℃。JF-LI4具有较宽的作用温度和良好的热稳定性,在30~100℃的温度范围内剩余40%以上的酶活力。JF-LI1和JF-LI4的最适pH分别为7.0和7.5,在中性偏酸性条件下具有较高的活力和较强的稳定性。重组JF-LI1和JF-LI4具有较宽的底物谱,除了对D-来苏糖活性最高外,对L-核糖、L-核酮糖、D-果糖和D-甘露糖均具有活性。重组JF-LI1和JF-LI4对L-核糖的催化效率分别为0.56 L/(mmol·s-1)和0.61 L/(mmol·s-1),是目前已知的D-来苏糖异构酶中最高的。结论: 从高温温泉宏基因组中获得8个新的D-来苏糖异构酶基因,对JF-LI1和JF-LI4进行异源表达和性质研究,具有pH稳定性好、热稳定性强以及底物特异性宽泛的特点,在制药、食品、化妆品等工业领域有重要的应用潜力。  相似文献   

4.
为构建能够同时高效利用五碳糖和六碳糖发酵产D-乳酸的重组大肠杆菌工程菌,以能高效利用五碳糖发酵产D-乳酸的大肠杆菌工程菌E.coli JH13为出发菌株,通过Red同源重组技术敲除葡萄糖跨膜转运基因pts G。实验结果表明,pts G缺陷菌株E.coli JH15在10%混合糖(5%葡萄糖和5%木糖)培养基中发酵,可同时利用五碳糖和六碳糖以完成发酵;而对照菌葡萄糖消耗完才利用木糖,发酵结束还有18 g/L木糖残留;JH15乳酸产量为83.04 g/L,相比于对照菌株提高了25.86%;在稻草秸秆水解液中发酵,JH15同时利用葡萄糖、木糖和L-阿拉伯糖,乳酸产量为25.15 g/L,转化率为86.42%。JH15作为能利用混合糖同步发酵产D-乳酸的大肠杆菌工程菌,它的成功构建为利用廉价的木质纤维素水解物为原料发酵生产D-乳酸提供参考依据。  相似文献   

5.
稀少糖是自然界中含量稀少、化学合成困难的一类低热量单糖。D-阿洛糖是一种重要的稀少己醛糖,其具有减少活性自由基、抑制癌细胞增殖等独特的生理学功能。因此,以微生物发酵生产D-阿洛酮糖-3-差向异构酶(DPE)和L-鼠李糖异构酶(L-RhI)转化生产D-阿洛糖,成为近几年来国际研究的热点之一。文中分别克隆了来源于解纤维梭菌Clostridium cellulolyticum H10的DPE基因以及来源于枯草芽胞杆菌Bacillussubtilis 168的L-RhI基因,并分别使其在宿主菌B.subtilis及大肠杆菌Escherichia coli BL21(DE3)中得到了表达。进一步利用镍亲和层析和阴离子交换色谱等手段对这两种酶进行了纯化,并对这两种纯化后酶的转化能力进行了分析测定。结果表明,以D-果糖为原料利用两种异构酶依次转化获得D-阿洛酮糖及D-阿洛糖,其两步转化效率分别为27.34%和34.64%。  相似文献   

6.
D-塔格糖具有多种独特的生理特性与功能,近年来已被发达国家开发作为具有高经济附加值的功能性甜味剂进行销售。D-塔格糖的商业化生产长期以来依赖化学催化法,随着20世纪90年代利用L-阿拉伯糖异构酶(简称L-AI酶)催化D-半乳糖制备D-塔格糖技术的兴起,生物法生产D-塔格糖成为了新的发展趋势。结合笔者所在课题组近年来的研究成果,就D-塔格糖生物法生产工艺的研究现状和前景进行综述与展望。  相似文献   

7.
酶转化法是功能性稀少糖生产的重要途径,但单一稀少糖转化酶的转化率普遍较低。文中提出构建双酶偶联转化系统提高转化效率的思路,即利用D-阿洛酮糖3-差向异构酶(D-psicose 3-epimerase,DPE)和L-鼠李糖异构酶(L-rhamnose isomerase,L-RhI)双酶偶联反应,催化D-果糖生成D-阿洛酮糖和D-阿洛糖等功能性稀少糖。DPE和L-RhI加酶量的比例为1∶10,其中DPE的浓度为0.05 mg/mL;转化反应的最佳温度为60℃,最适pH为9.0。当D-果糖浓度为2%时,反应10 h达到平衡,此时D-阿洛酮糖和D-阿洛糖的产量分别为5.12和2.04 g/L。利用文中提出的双酶偶联系统可以将果葡糖浆等富含果糖的低附加值原料转化为含有功能性稀少糖的高附加值混合糖液。  相似文献   

8.
用在L-阿拉伯糖上培养的白地霉(Geotrichum candidum Link)2.361无细胞提取液进行了L-阿拉伯糖代谢酶体系的研究。查明L-阿拉伯糖代谢的变化途径如下: L-阿拉伯糖+NADPH_2 戊醛糖还原酶L-阿拉伯糖醇+NADP L-阿拉伯糖醇+NAD L-阿拉伯糖醇脱氢酶L-木酮糖+NADH_2 L-木酮糖+NADPH_2 NADP-木糖醇脱氢酶木糖醇+NADP 木糖醇+NAD NAD-木糖醇脱氢酶D-木酮糖+NADH_2 D-木酮糖+ATP D-木酮糖激酶→D-木酮糖-5-磷酸+ADP L-阿拉伯糖醇脱氢酶仅存在于L-阿拉伯糖培养的菌体中,而不存在于木糖培养的菌体中。可见它与木糖醇脱氢酶不是同一个酶。这一点与文献报导的不同,在黄青霉中这两种酶活力被认为是同一种酶的作用。  相似文献   

9.
稀有糖是一类在自然界中存在但含量很低、同时具有重要生理功能的一类单糖及其衍生物,在膳食、保健、医药等领域中发挥着重要的作用。此外稀有糖还可以作为多种天然产物和药物的合成前体。然而稀有糖的合成成本较高,大大制约了其广泛应用。当前利用微生物和酶转化法合成稀有糖成为一种强有利的工具。综述了生物法合成稀有己酮糖(包括D-塔格糖、D-山梨糖、D-阿洛酮糖、L-塔格糖、L-果糖、L-山梨糖和1-脱氧-L-果糖等)的研究进展,探讨了稀有己酮糖合成策略的研究趋势。  相似文献   

10.
【背景】D-甘露糖具有多种功能活性,在食品、医药、饲料等行业应用广泛。D-甘露糖异构酶可以催化D-果糖与D-甘露糖之间的相互转化,在D-甘露糖的酶法制备中具有应用潜力。【目的】克隆一个链霉菌(Streptomycessp.)来源的D-甘露糖异构酶基因(ssMIaseA)并在大肠杆菌中表达,研究其酶学性质,并用于制备D-甘露糖。【方法】从链霉菌(Streptomycessp.)中发掘一个D-甘露糖异构酶基因(ssMIaseA),构建重组表达质粒pET-28a-ssMIaseA并在大肠杆菌BL21(DE3)中表达,经Ni-NTA亲和层析纯化后测定酶学性质,利用高效液相色谱对SsMIaseA制备D-甘露糖进行研究。【结果】SsMIaseA与嗜热裂孢菌(Thermobifda fusca)来源的D-甘露糖异构酶ManI相似性最高,为60.2%。该酶比酶活为525 U/mg,分子量约为45 kD,最适pH和温度分别为7.5和45°C,在pH 6.5-10.0范围内和45°C以下保持稳定。该酶对甘露糖具有最高催化活性,其次是果糖、塔罗糖和塔格糖。利用SsMIaseA转化600 g/L D-果糖,反应8 h达到平衡,生成185 g/L D-甘露糖,转化率为31%。【结论】SsMIaseA作为新型D-甘露糖异构酶为D-甘露糖的酶法制备奠定了基础。  相似文献   

11.
12.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney as a complex of renin, so-called high molecular weight (HMW) renin. Our recent studies demonstrated that human RnBP is the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353]. We have purified recombinant human, rat, and porcine RnBPs expressed in Escherichia coli JM 109 cells. The purified recombinant RnBPs existed as dimers and inhibited porcine renin activity strongly. On the other hand, porcine renin inhibited recombinant GlcNAc 2-epimerase activities. The human GlcNAc 2-epimerase activity could not be detected in the absence of a nucleotide, whereas ATP, dATP, ddATP, ADP, and GTP enhanced the human GlcNAc 2-epimerase activity. Other nucleotides had no effect on human GlcNAc 2-epimerase activity. Rat and porcine GlcNAc 2-epimerases were activated by several nucleotides. Nucleotides that enhance the activity of GlcNAc 2-epimerases protect these enzymes against degradation by thermolysin. These results indicate that mammalian RnBPs have GlcNAc 2-epimerase activity and that nucleotides are essential for formation of the catalytic domain of the enzyme.  相似文献   

13.
Glycosaminoglycans (GAGs) are polysaccharides that are typically present in a wide diversity of animal tissue. Most common GAGs are well-characterized and pharmaceutical applications exist for many of these compounds, e.g. heparin and hyaluronan. In addition, also bacterial glycosaminoglycan-like structures exist. Some of these bacterial GAGs have been characterized, but until now no bacterial GAG has been found that possesses the modifications that are characteristic for many of the animal GAGs such as sulfation and C5-epimerization. Nevertheless, the latter conversion may also occur in bacterial and archaeal GAGs, as some prokaryotic polysaccharides have been demonstrated to contain L-iduronic acid. However, experimental evidence for the enzymatic synthesis of L-iduronic acid in prokaryotes is as yet lacking. We therefore performed an in silico screen for D-glucuronyl C5-epimerases in prokaryotes. Multiple candidate C5-epimerases were found, suggesting that many more microorganisms are likely to exist possessing an L-iduronic acid residue as constituent of their cell wall polysaccharides.  相似文献   

14.
Three enzymes of the l-arabinose catabolic pathway in Aerobacter aerogenes, l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, are specifically induced in the presence of l-arabinose. Mutants constitutive for kinase activity are also constitutive for the isomerase and 4-epimerase activities, suggesting that these three enzymes are coordinately controlled in A. aerogenes. l-Ribulokinase activity can still be induced in the presence of l-arabinose in an isomerase-deficient strain of A. aerogenes. Since l-arabinose is not converted to l-ribulose in such a strain, it appears that l-arabinose must be the inducer of l-ribulokinase, as well as the coordinately controlled isomerase and 4-epimerase. As in the metabolism of l-arabinose, growth of A. aerogenes on l-arabitol also requires a 4-epimerase for the conversion of l-ribulose-5-phosphate to d-xylulose-5-phosphate. However, loss of ability to metabolize l-arabinose, due to a deficiency in 4-epimerase synthesis in the presence of l-arabinose, does not affect growth on l-arabitol. In addition, synthesis of the 4-epimerase associated with l-arabitol metabolism is not accompanied by l-arabinose isomerase or l-ribulokinase synthesis. These results suggest either the existence of two different l-ribulose-5-phosphate 4-epimerases in A. aerogenes, or of two different regulatory mechanisms for the control of the same epimerase.  相似文献   

15.
Genes yiaP and yiaR of the yiaKLMNOPQRS cluster of Escherichia coli are required for the metabolism of the endogenously formed L-xylulose, whereas yiaS is required for this metabolism only in araD mutants. Like AraD, YiaS was shown to have L-ribulose-5-phosphate 4-epimerase activity. Similarity of YiaR to several 3-epimerases suggested that this protein could catalyze the conversion of L-xylulose-5-phosphate into L-ribulose-5-phosphate, thus completing the pathway between L-xylulose and the general metabolism.  相似文献   

16.
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved ‘transient keto intermediate’ mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.  相似文献   

17.
A purified recombinant enzyme from Spirochaeta thermophila, that is suggested to be a cellobiose 2-epimerase, was a 47 kDa monomer with a specific activity of 29.2 U min?1 for mannobiose. The epimerization activity of the recombinant enzyme for mannobiose was maximal at pH 7.0 and 60 °C with a half-life of 124 h. The enzyme exhibited a higher epimerization activity for mannose or the mannose moiety at the reducing end of β- and α-1,4-glycosyl-mannose than for glucose or the glucose moiety of β- and α-1,4-glycosyl-glucose. The enzyme was identified as a mannobiose 2-epimerase by evaluating its substrate specificity with not only glucose-containing sugars but also mannose-containing sugars. The activities of the reported cellobiose 2-epimerases from Caldicellulosiruptor saccharolyticus, Dictyoglomus turgidum and Ruminococcus marinus for mannobiose were higher than those for cellobiose, strongly suggesting that these enzymes are not cellobiose 2-epimerases but are mannobiose 2-epimerases.  相似文献   

18.
Enzymes that employ a transient oxidation mechanism catalyze transformations that are overall redox neutral, but involve intermediates that have a higher oxidation state than the substrates or products. An oxidation/reduction sequence may be used directly to promote isomerization reactions or indirectly to permit the formation of stabilized intermediates such as carbanions. This review will focus on three recent examples of nicotinamide-dependent enzymes that have been found to employ transient oxidation during catalysis: ADP-L-glycero-D-manno-heptose 6-epimerase, GDP-mannose 3,5-epimerase, and the 6-phosphoglucosidases from family 4. These enzymes are remarkable in their ability to catalyze either nonstereospecific hydride transfers or multiple chemical steps within a single active site.  相似文献   

19.
The major cell-surface carbohydrates (lipooligosaccharide, capsule, and glycoprotein N-linked heptasaccharide) of Campylobacter jejuni NCTC 11168 contain Gal and/or GalNAc residues. GalE is the sole annotated UDP-glucose 4-epimerase in this bacterium. The presence of GalNAc residues in these carbohydrates suggested that GalE might be a UDP-GlcNAc 4-epimerase. GalE was shown to epimerize UDP-Glc and UDP-GlcNAc in coupled assays with C. jejuni glycosyltransferases and in sugar nucleotide epimerization equilibria studies. Thus, GalE possesses UDP-GlcNAc 4-epimerase activity and was renamed Gne. The Km(app) values of a purified MalE-Gne fusion protein for UDP-GlcNAc and UDP-GalNAc are 1087 and 1070 microm, whereas those for UDP-Glc and UDP-Gal are 780 and 784 microm. The kcat and kcat/Km(app) values were three to four times higher for UDP-GalNAc and UDP-Gal than for UDP-GlcNAc and UDP-Glc. The comparison of the kinetic parameters of MalE-Gne to those of other characterized bacterial UDP-GlcNAc 4-epimerases indicated that Gne is a bifunctional UDP-GlcNAc/Glc 4-epimerase. The UDP sugar-binding site of Gne was modeled by using the structure of the UDP-GlcNAc 4-epimerase WbpP from Pseudomonas aeruginosa. Small differences were noted, and these may explain the bifunctional character of the C. jejuni Gne. In a gne mutant of C. jejuni, the lipooligosaccharide was shown by capillary electrophoresis-mass spectrometry to be truncated by at least five sugars. Furthermore, both the glycoprotein N-linked heptasaccharide and capsule were no longer detectable by high resolution magic angle spinning NMR. These data indicate that Gne is the enzyme providing Gal and GalNAc residues with the synthesis of all three cell-surface carbohydrates in C. jejuni NCTC 11168.  相似文献   

20.
l-Rhamnose is a component of plant cell wall pectic polysaccharides, diverse secondary metabolites, and some glycoproteins. The biosynthesis of the activated nucleotide-sugar form(s) of rhamnose utilized by the various rhamnosyltransferases is still elusive, and no plant enzymes involved in their synthesis have been purified. In contrast, two genes (rmlC and rmlD) have been identified in bacteria and shown to encode a 3,5-epimerase and a 4-keto reductase that together convert dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose. We have identified an Arabidopsis cDNA that contains domains that share similarity to both reductase and epimerase. The Arabidopsis gene encodes a protein with a predicated molecular mass of approximately 33.5 kD that is transcribed in all tissue examined. The Arabidopsis protein expressed in, and purified from, Escherichia coli converts dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose in the presence of NADPH. These results suggest that a single plant enzyme has both the 3,5-epimerase and 4-keto reductase activities. The enzyme has maximum activity between pH 5.5 and 7.5 at 30 degrees C. The apparent K(m) for NADPH is 90 microm and 16.9 microm for dTDP-4-keto-6-deoxy-Glc. The Arabidopsis enzyme can also form UDP-beta-l-rhamnose. To our knowledge, this is the first example of a bifunctional plant enzyme involved in sugar nucleotide synthesis where a single polypeptide exhibits the same activities as two separate prokaryotic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号