首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
【背景】环二腺苷酸(Cyclic Diadenosine Monophosphate,c-di-AMP)是一种主要存在于革兰氏阳性菌中的重要的第二信使分子,其参与细菌的生长、生存、抗逆性等多种生理活动,但目前关于乳酸菌中c-di-AMP的研究甚少。【目的】从植物乳杆菌(Lactobacillus plantarum)中克隆得到c-di-AMP合成酶基因,在大肠杆菌中进行可溶性表达并研究其体外活性。【方法】使用高效液相色谱以及质谱分析对植物乳杆菌-YRA7细胞内容物中的c-di-AMP进行检测;以植物乳杆菌-YRA7基因组DNA为模板,克隆c-di-AMP合成酶基因(lpDacA),构建重组表达载体pET-28a-lpDacA并在大肠杆菌BL21(DE3)中诱导表达,通过Ni-NTA亲和层析纯化后进行体外活性研究。【结果】在植物乳杆菌中检测到c-di-AMP分子;成功构建了c-di-AMP合成酶基因的重组表达质粒,该重组蛋白在大肠杆菌中得到可溶性表达;体外活性分析显示,该重组蛋白可以催化ATP生成c-di-AMP,其活性依赖于二价阳离子的存在,在Mg~(2+)存在以及碱性环境下活性较强;RHR是合成酶活性的关键基序,是环二腺苷酸合成酶与ATP的结合位点。【结论】植物乳杆菌c-di-AMP合成酶的克隆表达及活性分析为进一步研究c-di-AMP在植物乳杆菌中的作用奠定了基础。  相似文献   

2.
摘要:【目的】干酪乳杆菌广泛的应用于食品加工和饲料行业,本研究拟构建表达甘露聚糖酶的重组干酪乳杆菌并进行相关评价。【方法】利用干酪乳杆菌表达载体pELX1和pELSH,将短小芽孢杆菌的β-1,4-甘露聚糖酶成熟肽的基因克隆到上述两个载体中,构建的重组质粒电转化到干酪乳杆菌宿主中,分别构建能够胞内表达和分泌表达甘露聚糖酶的重组干酪乳杆菌。【结果】重组干酪乳杆菌菌株经培养后,胞内表达的β-1,4-甘露聚糖酶在重组细胞总蛋白中最高可达23 U/mg,分泌表达培养基上清的β-1,4-甘露聚糖酶最高达到8.8 U/mL。【结论】本研究首次实现了甘露聚糖酶在干酪乳杆菌中的表达,结果表明该重组干酪乳杆菌具有较大的应用前景,值得进一步研究。  相似文献   

3.
【目的】开发一种新型的大肠杆菌表面展示系统,为C末端截短NCgl1221蛋白作为锚定蛋白提供科学依据,丰富并优化细菌表面展示系统。【方法】扩增C末端截短NCgl1221序列和β-淀粉酶基因,构建融合蛋白表达载体。将重组载体PET-NA和空载体PET-28a分别转入Rosetta(DE3)pLysS中,IPTG诱导表达,SDS-PAGE和Western blot鉴定融合蛋白表达情况。将诱导表达菌株进行免疫荧光染色,荧光显微镜观察和流式细胞分析检测β-淀粉酶的展示。酶活测定和淀粉水解分析验证被展示β-淀粉酶的活性。【结果】融合蛋白成功地在大肠杆菌中表达,有活性的β-淀粉酶通过与锚定蛋白C末端的融合被展示在了宿主菌表面,展示β-淀粉酶的重组菌可以水解利用培养基中的淀粉。【结论】成功开发了一种以C末端截短NCgl1221为锚定蛋白的新型大肠杆菌表面展示系统,并以此系统展示了分子量大小为56 kDa的活性酶,为该系统在全细胞催化剂或吸附剂等方面的应用奠定了基础。  相似文献   

4.
【目的】克隆表达浸麻类芽孢杆菌(Paenibacillus macerans)的葡甘露聚糖降解酶,研究其性质和功能,丰富葡甘露聚糖降解酶资源,了解浸麻类芽孢杆菌降解葡甘露聚糖机制。【方法】检索浸麻类芽孢杆菌的葡甘露聚糖降解酶基因,构建重组菌株,表达纯化重组酶,系统研究其功能及在降解葡甘露聚糖中的作用。【结果】克隆表达了5个葡甘露聚糖降解酶组分。结果显示Pm Man1和Pm Man2为内切β-甘露聚糖酶,Pm Glc1、Pm Glc2和Pm Glc3为外切β-葡萄糖苷酶。其中Pm Glc1只能水解p NPβGlc,Pm Glc2能水解二糖和人参皂苷的β-1,6-葡萄糖苷键,而Pm Glc3对β-葡萄糖苷键的选择性较为广泛。Pm Man1、Pm Man2、Pm Glc2和Pm Glc3能够降解葡甘露寡糖,Pm Man1和Pm Man2可以降解葡甘露聚糖。共同降解葡甘露聚糖时,Pm Glc2和Pm Glc3与Pm Man2具有协同效应,且Pm Glc3与Pm Man2的协同作用更为显著。【结论】从浸麻类芽孢杆菌中获得了4种葡甘露聚糖降解酶,阐明了该菌葡甘露聚糖降解酶系成员的作用,丰富了酶资源...  相似文献   

5.
【背景】蛋白酶广泛应用于制革行业中,酶法脱毛对环境污染较小,但蛋白酶对化学试剂的不稳定性及胶原降解活性限制了其工业应用。【目的】克隆芽孢杆菌(Bacillussp.)N1基因组的碱性蛋白酶基因,实现其在大肠杆菌中的异源表达,并对重组酶酶学性质及脱毛作用进行研究。【方法】利用基因组文库法克隆获得蛋白酶基因aprG,构建重组大肠杆菌(Escherichiacoli)BL21(DE3)pLysS/pET-28a-aprG。异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达该重组酶,以福林酚显色法对其酶学性质进行研究,并将AprG作用于羊皮、兔皮和羽毛。【结果】克隆得到蛋白酶基因aprG,并实现其在大肠杆菌中的表达。重组酶AprG最适反应温度为50°C,最适反应pH为10.0。各种金属离子对AprG活性影响较小,且AprG对表面活性剂和氧化剂、还原剂的耐受性较强。底物特异性分析表明,该酶胶原活性较低。AprG对羊皮和兔皮作用显著,且降解羽毛效果明显。【结论】蛋白酶AprG在制革行业中具有良好的应用前景。  相似文献   

6.
孟嘉仪  张国晶  周凤恩  王楠  周义发  原野 《微生物学报》1963,(收录汇总):3129-3143
【目的】克隆表达浸麻类芽孢杆菌(Paenibacillus macerans)的葡甘露聚糖降解酶,研究其性质和功能,丰富葡甘露聚糖降解酶资源,了解浸麻类芽孢杆菌降解葡甘露聚糖机制。【方法】检索浸麻类芽孢杆菌的葡甘露聚糖降解酶基因,构建重组菌株,表达纯化重组酶,系统研究其功能及在降解葡甘露聚糖中的作用。【结果】克隆表达了5个葡甘露聚糖降解酶组分。结果显示PmMan1和PmMan2为内切β-甘露聚糖酶,PmGlc1、PmGlc2和PmGlc3为外切β-葡萄糖苷酶。其中PmGlc1只能水解pNPβGlc,PmGlc2能水解二糖和人参皂苷的β-1,6-葡萄糖苷键,而PmGlc3对β-葡萄糖苷键的选择性较为广泛。PmMan1、PmMan2、PmGlc2和PmGlc3能够降解葡甘露寡糖,PmMan1和PmMan2可以降解葡甘露聚糖。共同降解葡甘露聚糖时,PmGlc2和PmGlc3与PmMan2具有协同效应,且PmGlc3与PmMan2的协同作用更为显著。【结论】从浸麻类芽孢杆菌中获得了4种葡甘露聚糖降解酶,阐明了该菌葡甘露聚糖降解酶系成员的作用,丰富了酶资源和理论研究成果的同时,为酶法制备活性葡甘露寡糖提供了有效工具。  相似文献   

7.
【目的】实现地衣芽孢杆菌麦芽糖淀粉酶在枯草芽孢杆菌中的高效异源表达,并研究该重组酶的酶学性质。【方法】克隆巨大芽孢杆菌木糖异构酶基因的启动子区域及其调控蛋白,构建一个大肠杆菌/芽孢杆菌穿梭型诱导表达质粒,使用该诱导型启动子介导麦芽糖淀粉酶编码基因,实现其在枯草芽孢杆菌中的功能表达。对重组枯草芽孢杆菌的诱导条件进行优化,提高麦芽糖淀粉酶的产量。【结果】获得了诱导表达麦芽糖淀粉酶基因的重组枯草芽孢杆菌菌株。最适诱导温度为45°C,最适诱导剂添加浓度为1%,最适添加诱导剂时间为接种培养9 h后。重组酶蛋白分子量大小为67 k D,对该酶的酶学性质研究发现,以可溶性淀粉为底物,反应生成麦芽糖和葡萄糖,其中麦芽糖含量为60.42%。重组酶最适作用温度为45°C,最适作用p H为6.5,Ca2+、Co2+、EDTA对该重组麦芽糖淀粉酶具有激活作用。【结论】通过木糖诱导表达系统可以实现麦芽糖淀粉酶在枯草芽孢杆菌中的高效诱导型表达,酶活最高可达296.64 U/m L发酵液,在工业上有着较好的应用前景。  相似文献   

8.
徐慧  刘曹彤  彭学 《微生物学通报》2023,50(5):1772-1786
【背景】对羟基苯甲酸及其酯类常作为合成多种芳香族化合物的前体物质广泛应用于多个领域,但其难以自然降解给环境造成了污染问题,同时这些污染物随着洋流迁移到海洋中破坏海洋生态环境。【目的】从海洋环境中筛选对羟基苯甲酸酯高效降解菌,通过全基因组测序及注释分析,预测对羟基苯甲酸酯代谢通路,确定其代谢过程中的关键酶并进行功能研究。【方法】通过富集培养从海洋环境中分离对羟基苯甲酸酯降解菌,利用基因克隆技术将降解对羟基苯甲酸酯关键酶基因在大肠杆菌中高效表达,探究重组蛋白活性及酶学特征。【结果】从海底泥沙中筛选到一个菌株,经16S rRNA基因测序鉴定为硝化柠檬球菌(Citricoccus nitrophenolicus);该菌株能够利用多种对羟基苯甲酸酯类物质进行生长,在甲酯为碳源条件下生长状态最好;将羧酸酯酶基因和单加氧酶基因在大肠杆菌中进行高效表达,重组表达的羧酸酯酶最适反应条件为:pH 8.0,30℃反应30 min;重组表达的单加氧酶活性表达依赖于辅酶,Mg2+、Mn2+、Zn2+和Fe3+可增强该酶活性;经荧光定量PCR进一步...  相似文献   

9.
【背景】目前对于酸菜发酵的研究主要关注点是植物乳杆菌(Lactobacillus plantarum),有关短乳杆菌(Lactobacillus brevis)在酸菜方面的研究报道很少。【目的】为了挖掘短乳杆菌的发酵性能并开发酸菜发酵剂,将2株短乳杆菌分别与1株植物乳杆菌进行组合并发酵酸菜,分析短乳杆菌对酸菜发酵品质的影响。【方法】分别测定短乳杆菌与植物乳杆菌的单菌株生长产酸性能、耐酸性及亚硝酸盐降解力,并将两菌种组合后发酵酸菜,分析1-7d内酸度、乳酸菌活菌数、亚硝酸盐含量及酸菜质构特性的变化趋势。【结果】相较于短乳杆菌Lb-9-2,短乳杆菌Lb-5-3的生长和产酸速率较慢、酸耐受力较弱,但其亚硝酸盐降解力较强。两株短乳杆菌分别与植物乳杆菌Lp-9-1组合后产酸力显著增强,并在3 d时达到最低pH值(约3.10);植物乳杆菌Lp-9-1的添加使酸菜中总体乳酸菌生长延迟,在5 d时达到最高活菌数;组合菌种的样品中亚硝酸盐含量在1-7 d内变化较为平缓,前5天内两个组合之间差异不显著;接种乳酸菌会降低酸菜硬度和弹性,发酵3d时Lb-5-3/Lp-9-1组合的硬度最大,感官评价得分最高。【...  相似文献   

10.
【背景】乳杆菌属是发酵食品中最常见的微生物之一,与食品的品质和安全密切相关,定量检测乳杆菌活菌数、解析乳杆菌群落组成对发酵乃至肠道微生物等具有重要意义。【目的】建立一种在种水平上定量检测5种乳杆菌活菌数的叠氮溴化丙锭-荧光定量PCR (propidium monoazide-quantitative PCR,PMA-qPCR)检测方法并探讨其适用性。【方法】以植物乳杆菌、发酵乳杆菌、短乳杆菌、嗜酸乳杆菌和干酪乳杆菌等发酵食品中常见的5种乳杆菌为目标菌株,查找并筛选特异性引物用于荧光定量PCR (qPCR)检测,优化叠氮溴化丙锭(PMA)处理条件,测定PMA-qPCR检测法的特异性、灵敏度及可靠性。最后利用PMA-qPCR法检测黄酒酿造过程中5种乳杆菌的活菌数。【结果】PMA最佳处理条件为:浓度20 μmol/L下暗处理15 min后曝光15 min,此时可抑制样品中99.89%的死菌DNA扩增。该方法特异性高,能够准确识别5种乳杆菌;线性关系强,R2>0.98;灵敏度高,检测限为101.8?103.2 CFU/mL;重复性好,Cq值变异系数小于1%;与平板计数相比差异不显著(统计学上),p>0.05。利用该方法检测黄酒中5种乳杆菌的活菌数,发现发酵乳杆菌、干酪乳杆菌和短乳杆菌是主要的乳杆菌(总计占比59%?89%),与已知黄酒酿造中乳杆菌群落组成相符。【结论】建立的PMA-qPCR法能够快速、准确地检测5种乳杆菌的活菌数,为解析样品中乳杆菌的实时组成及检测具有活性但不可培养(viable but nonculturable,VBNC)状态的乳杆菌提供了可靠的手段。  相似文献   

11.
Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with carbamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine consumed was clearly higher in the presence of ethanol (10-12%) and at low pH (3.0), which is consistent with both the decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest.  相似文献   

12.
Metabolism of [14C]citrulline in the perfused sheep and goat udder   总被引:1,自引:1,他引:0  
1. A lactating-sheep mammary gland was perfused for 12h in the presence of l-[2-(14)C]-citrulline and received adequate quantities of glucose, acetate and amino acids. Two lactating-goat udders were similarly perfused in the presence of either l-[carbamoyl-(14)C,-2-(14)C]citrulline or l-[carbamoyl-(14)C,1-(14)C]citrulline and l-[4-(3)H]arginine. 2. In these experiments, [(14)C]citrulline was substantially oxidized to CO(2) and converted into arginine and proline of casein. 3. The specific radioactivities of arginine, ornithine and proline of the plasma increased after passage through the udders, demonstrating that [(14)C]citrulline is metabolized by the mammary gland. 4. The presence of two unknown radioactive metabolites of [(14)C]citrulline was detected in the perfusate. These substances were not found after incubation in vitro of oxygenated blood in the presence of the radioactive precursor. 5. From these experiments, it is concluded that citrulline is metabolized in mammary tissue by way of arginine to urea, ornithine and proline.  相似文献   

13.
Arena ME  Manca de Nadra MC  Muñoz R 《Gene》2002,301(1-2):61-66
The genes implicated in the catabolism of the amino acid arginine by Lactobacillus hilgardii X(1)B were investigated to assess the potential for formation of ethyl carbamate precursors in wine. L. hilgardii X(1)B can use arginine via the arginine deiminase pathway. The complete nucleotide sequence of the arc genes involved in this pathway has been determined. They are clustered in an operon-like structure in the order arcABC. No evidence was found for the presence of a homologue of the arcD gene, coding for the arginine/ornithine antiporter. The arc genes have been expressed in Escherichia coli resulting in arginine deiminase (ArcA), ornithine carbamoyltransfera (ArcB) and carbamate kinase (ArcC) activities. The results indicate the need for caution in the selection of lactic acid bacteria for conducting malolactic fermentation in wine since arginine degradation could result in high amounts of ethyl carbamate.  相似文献   

14.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

15.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

16.
The wine lactic acid bacteria Leuconostoc oenos OENO and Lactobacillus buchneri CUC-3 catabolize L-arginine to ornithine and ammonia as major end-products, with 1 mole of arginine converted into 2 moles of ammonia and 1 mole of ornithine. Some citrulline was also excreted into the medium. The excreted citrulline was reassimilated and catabolized by the lactobacillus strain, though not by the leuconostoc. Urea was not detected during arginine degradation. The activities of all three enzymes of the arginine deiminase pathway (arginine deiminase, ornithine transcarbamylase and carbamate kinase) increased significantly over time in the presence of arginine. On the other hand, arginase and urease activities were undetectable in cell extracts of cultures grown in the presence of arginine. The results show that the arginine deiminase pathway, and not the arginase-urease pathway, is the route for arginine degradation in wine lactic acid bacteria.  相似文献   

17.
Arginine metabolism by wine lactic acid bacteria (LAB) may lead to wine quality degradation. While arginine is essential for growth of the wine relevant LAB Oenococcus oeni , it remains unclear whether it also stimulates its growth. This study evaluated the effect of arginine and citrulline, the partially metabolized intermediate of the arginine deiminase pathway, on the growth of two commercial O. oeni strains in comparison with a Lactobacillus buchneri strain in wine and at wine pH values. Neither arginine nor citrulline increased growth of both O. oeni strains in comparison with the L. buchneri strain. However, arginine and citrulline were partially degraded in all incubations. The extent of citrulline degradation correlated with lower pH values in oenococcal cultivations but with higher pH values in those of the L. buchneri strain. The degradation kinetics of O. oeni and L. buchneri for malic acid and arginine differed and the latter grew in sterile filtered post-malolactic fermentation wine. This study shows that arginine and citrulline did not stimulate growth of the two O. oeni strains studied, and that their physiological role differed among the wine LAB considered. While arginine may play a role in wine microbiological stability, other nutrients should be investigated for their suitability to create a selective ecological advantage for O. oeni strains in wine.  相似文献   

18.
We have previously shown that deficient arginine intake increased the rate of endogenous arginine synthesis from proline. In this paper, we report in vivo quantification of the effects of arginine intake on total endogenous arginine synthesis, on the rates of conversion between arginine, citrulline, ornithine, and proline, and on nitric oxide synthesis. Male piglets, with gastric catheters for diet and isotope infusion and femoral vein catheters for blood sampling, received a complete diet for 2 days and then either a generous (+Arg; 1.80 g x kg(-1) x day(-1); n = 5) or deficient (-Arg; 0.20 g.kg(-1).day(-1); n = 5) arginine diet for 5 days. On day 7, piglets received a primed, constant infusion of [guanido-(15)N(2)]arginine, [ureido-(13)C;5,5-(2)H(2)]citrulline, [U-(13)C(5)]ornithine, and [(15)N;U-(13)C(5)]proline in an integrated study of the metabolism of arginine and its precursors. Arginine synthesis (micromol x kg(-1) x h(-1)) from both proline (+Arg: 42, -Arg: 74, pooled SE: 5) and citrulline (+Arg: 67, -Arg: 120; pooled SE: 15) were higher in piglets receiving the -Arg diet (P < 0.05); and for both diets proline accounted for approximately 60% of total endogenous arginine synthesis. The conversion of proline to citrulline (+Arg: 39, -Arg: 67, pooled SE: 6) was similar to the proline-to-arginine conversion, confirming that citrulline formation limits arginine synthesis from proline in piglets. Nitric oxide synthesis (micromol x kg(-1) x h(-1)), measured by the rate conversion of [guanido-(15)N(2)]arginine to [ureido-(15)N]citrulline, was greater in piglets receiving the +Arg diet (105) than in those receiving the -Arg diet (46, pooled SE: 10; P < 0.05). This multi-isotope method successfully allowed many aspects of arginine metabolism to be quantified simultaneously in vivo.  相似文献   

19.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

20.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号