首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

2.
对厌氧折流板反应器(ABR)处理精对苯二甲酸(IOTA)生产废水的启动及相分离过程进行研究。结果表明:经过62d的运行,反应器在(35±1)℃、水力停留时间40h、容积负荷3.60kg/(m3·d)的条件下,最大COD去除率达到80%以上,ABR启动成功。沿着水流方向,不同格室中挥发性脂肪酸(VFA)浓度依次减小,CH4含量不断增加,且污泥中挥发性悬浮固体浓度(VSS)及其与总悬浮固体浓度(弼)之比、产甲烷活性和辅酶F420不断增大,ABR中显示出显著的厌氧微生物相分离特性。  相似文献   

3.
固定载体卧式厌氧反应器处理糖蜜废水的快速启动   总被引:1,自引:0,他引:1  
为高效处理高浓度有机废水而设计了固定载体卧式厌氧反应器R1和R2, 它是厌氧折流板反应器(ABR)的改进, 以活性炭纤维作为生物膜载体固定并充当反应器的折流板, 在实验室规模上对R1和R2处理糖蜜废水进行快速启动运行。HRT和ORL是影响R1和R2稳定高效运行及启动的2个重要工艺参数。实验证明: HRT为2 d时, 反应器运行最佳。在第30天时, R1的COD去除率达到84.88%, R2达到81.72%。随着进水ORL由1.25 kg/(m3·d)提升到10 kg/(m3·d), 沼气容积产气率由0.35 L/(L·d)逐渐增加到4.98 L/(L·d)。进水pH值为3.9?4.5之间, 整个启动运行过程中, 未调节pH值, R1和R2的出水pH值均在6.7?7.6之间, 2个反应器均有较强的抗酸能力, R1的pH波动更为平缓。在整个实验过程中, 污泥流失量小, 没有发生堵塞现象, 在处理酸性高浓度有机废水时, 2个反应器均表现出较强的抗负荷冲击能力。  相似文献   

4.
中试厌氧氨氧化反应器的启动与调控   总被引:17,自引:1,他引:16  
研究了中试厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)反应器的启动性能。结果表明,以硝化反硝化污泥、短程硝化污泥、厌氧絮体污泥和厌氧颗粒污泥混合接种,经过255d的运行,可在常温下(5oC~27oC)成功启动中试Anammox反应器,反应器的基质氮去除速率可达1.30kg/(m3·d)。厌氧氨氧化是致碱反应,厌氧氨氧化成为反应器内的主导反应后,进水pH宜控制在厌氧氨氧化适宜范围的偏低水平(6.8左右)。亚硝酸盐既是Anammox菌的基质,也是抑制剂,控制进水亚硝酸盐浓度(13~36mg/L)有助于厌氧氨氧化反应。菌种是生物反应器的功能之源,向中试装置投加少量厌氧氨氧化污泥(投加比2%),可大大加速中试Anammox反应器的启动进程。  相似文献   

5.
有机碳源下废水厌氧氨氧化同步脱氮除碳   总被引:1,自引:0,他引:1  
为明确有机碳源胁迫下,厌氧氨氧化反应器的同步脱氮除碳规律及功能微生物群落结构的动态变化,采用成功启动的厌氧氨氧化UASB反应器,通过逐步提升进水有机负荷,探究有机碳源下废水厌氧氨氧化同步脱氮除碳。研究表明,当进水化学需氧量(Chemical oxygen demand,COD)浓度从172 mg/L升至620 mg/L,反应器维持较高的脱氮效率,氨氮和总氮去除率均在85%以上,并对COD具有平均56.6%的去除率,高浓度COD未对Anammox菌活性构成显著抑制作用。聚合酶链式反应和变性梯度凝胶电泳(PCR-DGGE)图谱和割胶测序结果表明,变形菌门Proteobacteria、浮霉菌门Planctomycetes、绿曲挠菌门Chloroflexi以及绿菌门Chlorobi等微生物共存于同一反应体系中,推测反应器内存在复杂的脱氮除碳途径。而且,代表厌氧氨氧化的部分浮霉菌门微生物能耐受高浓度有机碳源,在高有机负荷下依旧发挥着高效的脱氮作用,为反应器高效脱氮提供了保障。  相似文献   

6.
燃料乙醇是国家能源安全的重要一环,现在主要通过木薯等非粮作物发酵制得,发酵过程中会产生大量废水,废水处理问题成为制约技术革新的关键。高温厌氧条件下,利用连续全混反应(CSTR)对木薯酒精废水进行厌氧处理,探究容积负荷、温度和p H对反应器产甲烷能力的影响。通过试验发现:设备启动完成后,保证COD去除率在90%以上条件下能够达到的最大容积负荷为8.2 kg COD/(m~3·d),容积负荷达到6.8 kg COD/(m~3·d)时,系统产甲烷能力达到最大值。58℃条件下,系统转化甲烷的效率最高。反应系统本身具有较强的p H调节能力,能够维持系统p H稳定在7.3~7.5之间;人为降低p H能够提高系统产气比,但气体中甲烷含量降低。  相似文献   

7.
研究了上流式厌氧复合床反应器(UASBF)处理垃圾渗滤液的启动期、负荷提高期、运行期的处理效果及CODCr负荷、pH、碱度对反应器运行的影响.结果表明,启动期最佳启动温度在35±1℃,进水pH6.8,CODCr浓度1000~1200 mg·L-1,水力停留时间(HRT)48h,容积负荷为0.5kgCODCr·m-3·d-1.提高期和运行期容积负荷为10kg CODCr·m-3·d-1,CODCr去除率为71.5%,氨氮去除率为57.5%,总磷去除率为64.8%,悬浮物达到去除率为55%.  相似文献   

8.
朱越平  韩锋 《生态科学》2013,32(5):599-603
为更好提高厌氧迁移式反应器(AMBR)的处理效能,采用自制有效容积为40.5L的5格室AMBR,通过进水COD质量浓度和水力停留时间(HRT)的调控,探讨了反应器在逐渐升高容积负荷(VLR)及突然受到高负荷冲击时对高浓度废水去除效果的影响。结果表明:VLR在3~9 kg COD×(m3·d) -1之间,COD去除率可稳定在88%以上,VLR为3.5 kg COD×(m3·d) -1时最高,达到92%,VLR超过10 kg COD×(m3·d) -1时,COD去除率开始下降,VLR超过12 kg COD×(m3·d) -1时,有机负荷超出系统承受限度,COD去除率下降到了75%。当VLR从7.5 kg COD×(m3·d) -1突然提升到15 kg COD×(m3·d) -1时,前2 d COD去除率并无明显下降,保持在84%,但在第3 d 降低到了78%,在恢复冲击前有机负荷后第4 d,COD去除率恢复到冲击前水平。  相似文献   

9.
升流厌氧污泥层反应器动力学模型   总被引:1,自引:0,他引:1  
用碘离子作示踪剂,采用矩形脉冲示踪法测定升流厌氧污泥层(UASB)反应器的流动分布。建立了申级返混加沟流模型。模型简单,能够反映反应器流动分布,具有较强的拟合能力和良好的适用性。运用流动模型和Monod方程,建立了UASB反应器稳态模型,并对模型参数进行了估计。通过灵敏度分析,进水基质浓度S。,废水流量Q,最大比基质降解速率,μmax 对出水基质浓度有较大影响。在稳态模型的基础上又建立了UASB反应器动态模态,利用此模型,对出水基质浓度序列Se,和产气量序列Qg进行计算预测,平均偏差分别5.40%和7.46%,标准偏差分别为7.02%和9.66%。  相似文献   

10.
厌氧生物处理技术因其具有有机负荷高、污泥产量低、能耗低等优点被广泛应用于各种废水处理中。厌氧颗粒污泥具有沉降性能好、微生物浓度高、有机负荷高等优点,极大地提高了废水处理效率。尤其在处理含高氨氮废水中,厌氧颗粒污泥的形成对反应器的高效生物脱氮至关重要。但到目前为止,厌氧反应器中的颗粒污泥形成及废水处理效果还缺乏系统的认识。鉴于此,总结了厌氧反应器中颗粒污泥的形成机制,分析了影响厌氧反应器中颗粒污泥形成的因素,论述了厌氧反应器中厌氧颗粒污泥生长的模拟,最后介绍了厌氧颗粒污泥在国内外的主流应用。厌氧反应器中颗粒污泥的形成是综合因素影响的结果,对影响厌氧颗粒污泥形成的每个因素都需要认真对待,可为在厌氧反应器中颗粒污泥的培育和应用提供理论指导和技术支撑。  相似文献   

11.
The primary objective of this study was to evaluate the effects of the organic loading rate on the performance of an up-flow anaerobic sludge blanket (UASB) reactor treating olive mill effluent (OME), based on the following indicators: (i) chemical oxygen demand (COD) removal efficiency; and (ii) effluent variability (phenol, suspended solids, volatile fatty acids, and pH stability). The UASB reactor was operated under different operational conditions (OLRs between 0.45 and 32 kg COD/m3·day) for 477 days. The results demonstrated that the UASB reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 47∼92%; total phenol, 34∼75%; color, 6∼46%; suspended solids, 34∼76%. The levels of VFAs in the influent varied between 310 and 1,750 mg/L. Our measurements of the VFA levels indicated that some of the effluent COD could be attributed to VFAs (principally acetate, butyrate, iso-butyrate, and propionate) in the effluent, which occurred at levels between 345 and 2,420 mg/L. As the OLRs were increased, more VFAs were measured in the effluent. A COD removal efficiency of 90% could be achieved as long as OLR was kept at a level of less than 10 kg COD/m3·day. However, a secondary treatment unit for polishing purposes is necessary to comply with discharge standards.  相似文献   

12.
A lab-scale investigation was conducted to examine the effectiveness of a multi-fed upflow anaerobic filter process for the methane production from a rice winery effluent at ambient temperatures. The experiment was carried in two identical 3.0-l upflow filters, a single-fed reactor and a multi-fed reactor. The results showed that the multi-fed reactor, operated at the ambient temperatures of 19–27 °C and influent chemical oxygen demand (COD) of 8.34–25.76 g/l, could remove over 82% of COD even at an organic loading rate (OLR) of 37.68 g-COD/l d and a short hydraulic retention time (HRT) of 8 h. This reactor produced biogas with a methane yield of 0.30–0.35 l-CH4/g-CODremoved. The multi-fed upflow anaerobic filter was proved to be more efficient than the single-fed reactor in terms of COD removal efficiency and stability against hydraulic loading shocks. A linear-regression model with influent COD concentration and HRT terms adequately described the multi-fed upflow anaerobic filter system for the treatment of rice winery wastewater at ambient temperatures.  相似文献   

13.
This study focused on the VFA (volatile fatty acid) profile variation with organic loading rate (OLR) of a two stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two stage TAnMBR treating high strength molasses-based synthetic wastewater was operated under a side-stream partial sedimentation mode at 55 °C. Reactor performances were studied at different OLR ranging from 5 to 12 kg COD m−3 d−1. Operational performance of TAnMBR was monitored by assessing biological activity, organic removal efficiency, and VFA. The major intermediate products of anaerobic digestion were identified as acetate, propionate, iso-butyrate, n-butyrate and valerate. Among them acetate and n-butyrate were identified as the most abundant components. Increase of OLR changes the predominant VFA type from acetic acid to n-butyric acid and the total VFA concentration was increased with increased OLR. Moreover, increased OLR increased organic removal efficiency up to second loading rate and dropped in third loading rate while biological activity was increased continuously.  相似文献   

14.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from chickpea flour was carried out in a laboratory-scale, mesophilic (35 °C) fluidised-bed reactor with saponite as bacterial support. Soluble chemical oxygen demand (SCOD) removal efficiencies in the range of 96.8–85.2% were achieved in the reactor at organic loading rates (OLR) of between 0.58 and 2.10 g chemical oxygen demand (COD)/l per day, hydraulic retention times (HRT) of between 14.9 and 4.5 days and average feed COD concentration of 9.1 g/l. Eighty-five percent of feed COD could be removed up to OLR of 2.1 g COD/l per day. The yield coefficient of methane production was 0.34 l of methane (at STP) per gram COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favourable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. Experimental data indicated that a total alkalinity in the range of 1090–2130 mg/l as CaCO3 was sufficient to prevent the pH from decreasing to below 7.2 for OLR of up to 2.7 g COD/l per day. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3–0.4) for OLR and HRT up to 2.7 g COD/l per day and 3.5 days, respectively. For a HRT of 2.8 days (OLR of 3.00 g COD/l per day) the start of acidification was observed in the reactor.  相似文献   

15.
Pot ale from a pilot-scale malt whisky distillery was treated using a mesophilic upflow anaerobic sludge blanket (UASB) digester. Stable operation was observed at organic loading rates (OLRs) of 5.46 kg COD/m3 day or less when the pot ale was diluted with tap water. Digester failure occurred when undiluted pot ale was used, even though OLR was less than 5 kg COD/m3 day. Overall performance was worse than that observed previously when UASB digesters were used to treat pot ale from a different source supplemented with trace elements. A substantial proportion of effluent chemical oxygen demand (COD) was present as volatile fatty acids (VFA), particularly during periods of reactor stress, indicating that overall performance was limited by the rate of VFA conversion. Wastewater alkalinity rose during digestion. The sludge which developed in the reactor was flocculent but did not form compact granules.  相似文献   

16.
The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON? Koch Membrane Systems, 30 m2 of filtration surface each). It was operated under mesophilic conditions (at 33 °C), 70 days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO?-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22 g L?1) were also analysed. The main performance results were about 87% of COD removal, effluent VFA below 20 mg L?1 and biogas methane concentrations over 55% v/v. Methane yield was strongly affected by the influent COD/SO?-S ratio. No irreversible fouling problems were detected, even for MLTS concentrations above 22 g L?1.  相似文献   

17.
A 450-m(3) multiplate anaerobic reactor (MPAR) has been started-up in April 1992 for treating wastewater (whey permeate and domestic wastewater) at the Nutrinor (Lactel) cheese factory in Chambord (Québec, Canada). The MPAR consists of four superimposed sections. The liquid flows upwards from one section to the next, while the gas is collected below each plate and evacuated through side-outlets. The wastewater is concurrently distributed at the bottom of the first, second, and third sections, as 50%, 33%, and 17% of the total influent stream, respectively. Granular anaerobic sludge at an initial concentration of 30 kg of volatile suspended solids (VSS) per cubic meter of reactor liquid volume was used to inoculate the reactor. Under normal operation of the factory, the chemical oxygen demand (COD) concentration of the influent ranged from 20 to 37 kg COD m(-3). The reactor organic loading rate (OLR) fluctuated between 9 and 14.7 kg COD m(-3) d(-1) for hydraulic retention times (HRT) maintained between 55 and 68 h. At the highest OLR, the MPAR showed an efficiency of 98% and 92% for soluble and total COD removal, respectively, and a methane production rate averaging around 4 m(3) m(-3) d(-1).Biomass-specific activities ranged between 7 and 51, 1.3 and 8.5, 5.3 and 12.2, 60 and 119, and 119 and 211 mmol g(-1) VSS d(-1) for glucose, propionate, acetate, formate, and hydrogen, respectively. Average equivalent-diameter of the granules was around 0.65 mm. The MPAR reactor generally showed a large capacity for solid retention with a biomass content between 32 and 37 kg VSS m(-3). (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
The effect of nickel deprivation from the influent of a mesophilic (30 degrees C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5-15 g COD l(-1) day(-1) for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (+/-0.167) g CH(4)-COD g VSS(-1) day(-1) compared to 2.027 (+/-0.111) g CH(4)-COD g VSS(-1) day(-1) in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 muM Ni (dosed as NiCl(2)) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号