首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
三种接种物启动Anammox-EGSB反应器的性能   总被引:2,自引:0,他引:2  
为了优选接种物和加速Anammox反应器启动,分别以厌氧产甲烷污泥 (Anaerobic methanogenic sludge,AMS)、新鲜厌氧氨氧化污泥 (Fresh Anammox sludge,FAS) 和储藏厌氧氨氧化污泥 (Stored Anammox sludge,SAS) 作为接种物,研究了厌氧氨氧化膨胀颗粒污泥床 (Anammox-EGSB) 反应器 (R1、R2和R3) 的启动性能。结果表明:3种接种物均能成功启动Anammox-EGSB反应器,启动性能的优劣次序为:R2 (接种物为  相似文献   

2.
目的:对UASB-生物膜反应器进行厌氧氨氧化反应的启动研究。方法:以自配含氨氮和亚硝氮的废水为进水,以氧化沟工艺城市污水处理厂回流污泥为接种污泥。结果:反应器内部菌群进行了竞争,在运行至第66d时氨氮、亚硝酸盐氮的去除率分别达到了60.4%、58.7%,同时有硝酸盐氮生成,表明厌氧氨氧化反应已经成为反应器内的主导反应。结论:厌氧氨氧化反应器实现了快速启动。  相似文献   

3.
厌氧氨氧化膨胀床反应器的运行性能   总被引:13,自引:0,他引:13  
张蕾  郑平 《生物工程学报》2008,24(7):1240-1247
试验研究了以竹炭为载体的厌氧氨氧化膨胀床反应器的运行性能.接种反硝化污泥,用模拟废水可成功启动该反应器:运行至144 d时,容积总氮去除率达到3.02 kg N/m3/d.这是国内文献报道的最高水平.动力学分析表明.这种反应器的最大容积总氮去除率可迭12.77 kg N/m3/d.具有很大的脱氮潜能.反应器的启动过程可分为菌体自溶、活性延滞和活性提高三个阶段.与此相应,污泥性状也从黄褐色絮状污泥变为棕灰色颗粒污泥和红色颗粒污泥.红色颗粒污泥以杆茵和球菌为主.厌氧氨氧化活性可达0.56mg TN/(mgprotein)/h,它们是反应器厌氧氨氧化功能的主要承载者.  相似文献   

4.
厌氧氨氧化启动过程Anammox菌富集规律和差异分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为明确厌氧氨氧化反应器启动过程中Anammox菌的富集规律,采用荧光原位杂交(FISH)和实时荧光定量PCR(q-PCR)分析技术,对未添加填料、添加多面空心球以及添加竹炭的3个UASB反应器厌氧氨氧化启动过程中Anammox菌的增长规律进行分析。研究表明,Anammox菌的相对数量和绝对数量均随着启动时间呈逐渐递增趋势,在稳定运行阶段的第123天,无填料、多面空心球和竹炭反应器中Anammox菌分别占总细菌的23.3%、32.6%和43.7%,单位VSS污泥中Anammox菌16S rRNA基因拷贝数分别为(25.64±2.76)×107、(47.12±2.76)×107和(577.99±27.25)×107拷贝数g–1 VSS。竹炭反应器中Anammox菌最大生长率和最短倍增时间分别为0.064 d?1和10.8 d,最大生长率分别是无填料和多面空心球反应器的1.78倍和1.88倍。因此,填料添加特别是竹炭的添加可极大地促进Anammox菌的选择性生长和繁殖。FISH和q-PCR分析技术均适用于Anammox菌的富集规律研究,但因其检测目标存在差异,造成两者表征结果有所不同。  相似文献   

5.
Anammox反应器启动过程中颗粒污泥性状变化特性   总被引:3,自引:0,他引:3       下载免费PDF全文
以厌氧颗粒污泥作为接种物,通过185 d的运行,成功启动了上流式厌氧氨氧化污泥床(Upflow anaerobic sludge blanket,UASB)反应器。反应器的进水氨氮与亚硝氮浓度分别提升至224 mg/L和255 mg/L,容积氮去除速率提升至3.76 kg/(m3·d)。采用红外光谱、扫描电镜和透射电镜等对厌氧氨氧化颗粒污泥的性状进行观察,发现颗粒污泥在启动过程中经历了污泥颗粒裂解到污泥颗粒重组的过程,且厌氧氨氧化颗粒污泥表面含有丰富的官能团,说明厌氧氨氧化颗粒污泥可能具有良好的吸附性能。采用宏基因组测序的方法对启动前后颗粒污泥的生态结构进行分析,发现原接种污泥优势菌群(变形菌门、厚壁菌门、拟杆菌门)丰度大幅减少,厌氧氨氧化菌所属的浮霉状菌门丰度则由1.59%提升到23.24%。  相似文献   

6.
短程硝化启动运行中功能菌群变化研究   总被引:3,自引:0,他引:3  
【目的】短程硝化-厌氧氨氧化是可实现的最短生物脱氮工艺,短程硝化是实现该工艺的重要环节和必要条件。【方法】采用序批式反应器(SBR)来实现短程硝化过程的启动和稳定运行,并对该过程中的相关功能菌群变化进行检测分析。【结果】通过控制低DO浓度(<1 mg/L)和逐步提高氨氮进水负荷,可抑制氨氧化细菌(NOB)菌群增殖并促进亚硝酸氧化菌(AOB)菌群规模显著扩大,实现短程硝化过程的启动和稳定运行。在氨氮进水负荷为0.055 kg/(m3.d)时,平均氨氮去除容积负荷和污泥负荷可达到0.043kg/(m3.d)和0.16 kg/(kg.d),平均亚硝酸盐积累率可达到83.4%。在短程硝化启动和稳定运行过程中,NOB菌群密度从2.0×105CFU/mL降至1.5×104CFU/mL,相对丰度从5.51%降至2.14%;AOB菌群密度从4.5×104CFU/mL增加至1.5×107CFU/mL,相对丰度从0.18%增加至7.25%。【结论】AOB菌群规模的扩大是实现短程硝化和氨氮去除能力提高的主要原因,同时较高的进水氨氮浓度和负荷也会造成亚硝化活性的抑制。  相似文献   

7.
厌氧氨氧化颗粒污泥研究进展   总被引:2,自引:1,他引:1  
厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)工艺是一种新的生物脱氮技术。一经问世即得到人们青睐,现已成为废水脱氮的升级技术。厌氧氨氧化菌(Anaerobicammoniumoxidation bacteria,AnAOB)是Anammox工艺的功能之源。以颗粒污泥形态存在的AnAOB是Anammox颗粒污泥床脱氮系统的重要支柱。由于AnAOB生长缓慢且对环境条件变化敏感,Anammox脱氮系统不仅启动缓慢,而且运行极易失稳甚至崩溃。值得庆幸的是,AnAOB可自主选择、组合和固定功能菌群落而形成Anammox颗粒污泥,并通过其优良的重力沉降性能和高效的基质转化性能保障Anammox脱氮系统的持续工作。本文综述了AnAOB的种类和特性及Anammox颗粒污泥的组成、结构和功能,以期为Anammox工艺的优化和拓展提供参考。  相似文献   

8.
气提式内循环硝化反应器运行性能的研究   总被引:25,自引:1,他引:24  
气提式内循环反应器具有很好的生物硝化性能,能承受高进水氨浓度(78.49mmol/L),具有高容积转化效率(163.18 mmol/L·d),运行性能稳定(氨去除率保持在94.42%以上)。在气提式内循环反应器的运行过程中,可产生硝化颗粒污泥。颗粒污泥开始出现的时间约为45d,颗粒污泥的粒径平均值0.83 mm,沉降速度55.53m/h,氨氧化活性0.95mmol (NH+4-N)/g(VS)·d。硝化颗粒污泥也具有厌氧氨氧化活性,氨氧化速率0.23mmol (NH+4-N)/g(VS)·d,亚硝酸还原速率0.24mmol (NO-2-N)/g(VS)·d。  相似文献   

9.
有机碳源下废水厌氧氨氧化同步脱氮除碳   总被引:1,自引:0,他引:1       下载免费PDF全文
为明确有机碳源胁迫下,厌氧氨氧化反应器的同步脱氮除碳规律及功能微生物群落结构的动态变化,采用成功启动的厌氧氨氧化UASB反应器,通过逐步提升进水有机负荷,探究有机碳源下废水厌氧氨氧化同步脱氮除碳。研究表明,当进水化学需氧量(Chemical oxygen demand,COD)浓度从172 mg/L升至620 mg/L,反应器维持较高的脱氮效率,氨氮和总氮去除率均在85%以上,并对COD具有平均56.6%的去除率,高浓度COD未对Anammox菌活性构成显著抑制作用。聚合酶链式反应和变性梯度凝胶电泳(PCR-DGGE)图谱和割胶测序结果表明,变形菌门Proteobacteria、浮霉菌门Planctomycetes、绿曲挠菌门Chloroflexi以及绿菌门Chlorobi等微生物共存于同一反应体系中,推测反应器内存在复杂的脱氮除碳途径。而且,代表厌氧氨氧化的部分浮霉菌门微生物能耐受高浓度有机碳源,在高有机负荷下依旧发挥着高效的脱氮作用,为反应器高效脱氮提供了保障。  相似文献   

10.
为了研究有机物对Anammox菌群的影响,以及微生物与脱氮的关系,为工艺改进提供依据。使用SBR厌氧氨氧化反应器,从反应器不同TOC/NH_4~+-N阶段采集活性污泥样品,利用聚合酶链式反应—变性梯度凝胶电泳(PCR-DGGE)技术,分析了样品中微生物种群结构。结果表明反应器中主要微生物包含变形菌门(Proteobacteria)、浮霉菌门(Planctomycetes)、厚壁菌门(Firmicutes)和绿菌门(Chlorobi);其中变形菌门(β-变形菌和γ-变形菌)为优势菌群。TOC/NH_4~+-N从0逐渐增加至2.0的过程中,反应器中的反硝化菌(变形菌门)不断增长,Anammox菌群在TOC/NH_4~+-N为0.4阶段得到最大程度的富集,此时反应器内部微生物多样性也最高;随着有机物含量增加,Anammox菌生长受到严重抑制,反应器微生物物种多样性也逐渐下降。荧光定量(qPCR)分析表明Anammox菌含量从1.30×10~(11) copies/mL下降至3.18×10~9 copies/mL,而DB含量从1.57×10~9copies/mL增加至3.74×10~(10) copies/mL。说明随着C/N的增加,反应器脱氮能力逐渐从Anammox过渡到反硝化过程。通过测定反应器内壁附着污泥,还发现其微生物丰度和含量均高于同时期反应器内部活性污泥样品,推测厌氧微生物菌群更适宜在静态基质生长。  相似文献   

11.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

12.
Leachate treatment is a challenging issue due to its high pollutant loads. There are several studies on feasible treatment methods of leachate. In the scope of this study, high organic content of young leachate was eliminated using an upflow anaerobic sludge blanket (UASB) and a membrane bioreactor (MBR) in sequence and effluent of the system was given to single reactor for high activity ammonia removal over nitrite (SHARON) and anaerobic ammonia oxidation (Anammox) reactors to remove nitrogen content. All reactors were set up at lab scale in order to evaluate the usage of these processes in sequencing order for leachate treatment. COD and TKN removal efficiencies were over 90 % in the combined processes which were operated during the study. The biodegradable portion of organic matter was removed with an efficiency of 99 %. BOD5 concentration decreased to 50 mg/L by UASB and MBR in sequence even the influent BOD5 concentration was over 8,000 mg/L. Although high nitrogen concentrations were observed in raw leachate, successful removal of nitrogen was accomplished by consecutive operations of SHARON and Anammox reactors. The results of this study demonstrated that with an efficient pretreatment of leachate, the combination of SHARON–Anammox processes is an effective method for the treatment of high nitrogen content in leachate.  相似文献   

13.
The longer start-up period of the Anammox process is due to the very low cellular yield and growth rates of Anammox bacteria. Nitrite inhibition is considered to be the key factor in the instability of the Anammox process during the operation. However, little attention was paid to the inhibitory effect of pH and free ammonia. This paper presents start-up and inhibition analysis of an Anammox biofilm reactor seeded with anaerobic granular sludge. Results showed that the start-up period could be divided into the sludge lysis phase, lag phase, propagation phase, stationary phase and inhibition phase. Optimization control could be implemented correspondingly to accelerate the start-up of Anammox bioreactors. Effluent pH increased to 8.7–9.1 when the nitrogen removal rate was higher than 1,200 mg l−1 day−1. The free ammonia concentration was accompanied with a higher level of 64–73 mg l−1. Inhibitory effects of high pH and free ammonia on Anammox bacteria contributed to the destabilization of the Anammox bioreactor during the first 125 days with influent KHCO3 of 0.5 g l−1. Increasing the suffering capacity in the inlet by dosing 1.25 g KHCO3 l−1 effectively reduced the pH variation, and the nitrogen removal performance of the reactor was further developed.  相似文献   

14.
Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 ± 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2 /NH4 + ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m3 day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.  相似文献   

15.
Anaerobic oxidation of ammonium is a biologically mediated process.   总被引:54,自引:0,他引:54       下载免费PDF全文
A newly discovered process by which ammonium is converted to dinitrogen gas under anaerobic conditions (the Anammox process) has now been examined in detail. In order to confirm the biological nature of this process, anaerobic batch culture experiments were used. All of the ammonium provided in the medium was oxidized within 9 days. In control experiments with autoclaved or raw wastewater, without added sludge or with added sterilized (either autoclaved or gamma irradiated) sludge, no changes in the ammonium and nitrate concentrations were observed. Chemical reactions could therefore not be responsible for the ammonium conversion. The addition of chloramphenicol, ampicillin, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), and mercuric chloride (HgIICl2) completely inhibited the activity of the ammonium-oxidizing sludge. Furthermore, the rate of ammonium oxidation was proportional to the initial amount of sludge used. It was therefore concluded that anaerobic ammonium oxidation was a microbiological process. As the experiments were carried out in an oxygen-free atmosphere, the conversion of ammonium to dinitrogen gas did not even require a trace of O2. That the end product of the reaction was nitrogen gas has been confirmed by using 15NH4+ and 14NO3-. The dominant product was 14-15N2. Only 1.7% of the total labelled nitrogen gas produced was 15-15N2. It is therefore proposed that the N2 produced by the Anammox process is formed from equimolar amounts of NH4+ and NO3-.  相似文献   

16.
郑平 《生物工程学报》2014,30(12):1801-1803
厌氧氨氧化是环境微生物领域的重要发现,在废水生物脱氮和地球氮素循环中具有重大作用。为了反映近年来国内外厌氧氨氧化研究的一些重要进展,组织出版了"厌氧氨氧化专刊"。本期专刊包括综述和研究论文两部分,内容涉及厌氧氨氧化的菌群富集、菌群分析、菌种保藏、碳源影响、工艺应用、优化对策等。  相似文献   

17.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

18.
Two approaches based on ne w process development and biological nitrogen transformation were investigated in a bench study for removing nitrogen as N2 gas from poultry waste while stabilizing the wastes. The process, known as "Anammox", was explored in batch anaerobic culture using serum bottles. The Anammox process involves the use of nitrite as an electron acceptor in the bacterially mediated oxidation of ammonia to yield N2. Studies are described wherein nitrite was added to poultry waste and the effects on ammonium levels were monitored. About 13-22% ammonium removal was observed with the inoculation of returned activated sludge, and the total ammonium reduction was not proportional to the reduction of nitrite, thereby suggesting that Anammox was less competitive under the conditions in our studies. The addition of nitrite and nitrate was not inhibitory to the process based on gas generation and COD reduction. The classical nitrogen removal process of nitrification followed with denitrification offers a more reliable basis for nitrogen removal from poultry wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号