首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During storms in 2005, a number of beech trees fell over at Biskopstorp, SW Sweden, offering the opportunity to study epiphytes along entire stems. In total 16 beech trees in four beech stands representing three different age classes were included. For each tree, 2 m segments from the base to the top were surveyed. In total 115 species were found (76 lichens, 39 bryophytes), of which 30 were considered to be of conservation concern (22 lichens, 8 bryophytes). For lichens significantly more species were recorded above 2 m in height, whereas more bryophytes were recorded below 2 m in height. Certain red-listed lichens were recorded only above 2 m in height on old trees. In a second data set from the same area 140 age-determined beech trees were surveyed for species of conservation concern at the heights 0–2 and 2–5 m, respectively. These species were found almost exclusively on old beech trees, and presence at 2–5 m was recorded, with one exception, only on those trees which also had species of conservation concern at 0–2 m. Records of these species correlated significantly to microhabitat variables, i.e. the presence of rough bark and moss cover higher up the stems on the old trees. This study indicates that surveying only the base in really old beech forests can underestimate both the number of species of conservation concern and their population sizes. However, surveys restricted to the base in rather even-aged beech stands catch a large proportion of the trees with species of conservation concern.  相似文献   

2.
We investigated vertical stratification and effects of crown damage on maximum tree height in two mixed conifer–broadleaf forests in Yakushima Island, southern Japan. In both research plots, the conifer trees dominated the upper canopy while the broadleaved trees dominated the middle to lower canopy. Most broadleaved trees were shorter than the median crown-base height (H CB) of the conifer trees. Estimates of the maximum height (H max) of the conifer trees were greater than those of the broadleaved trees. Crown damage had significant negative effects on maximum height of the conifer trees. Crown damage was observed for 72.8–88.7% of the conifer trees, and severe types of damage such as stem breakage and top die-back were the most predominant. The H max of the damaged conifer trees was 16–17% shorter than that of the intact trees and as much as 16–28% shorter than the potential maximum height estimated from the diameter–height relationship of the tallest intact trees. We inferred that crown disturbance is an important factor determining the maximum height of the canopy of the two mixed forests. Our results suggested that vertical stratification between conifer and broadleaved trees may be an important mechanism contributing to their coexistence and additive basal area of mixed forests on Yakushima Island.  相似文献   

3.
小兴安岭红松针阔混交林立木掘根特征   总被引:1,自引:0,他引:1  
测定了小兴安岭红松针阔混交林76个样方(20 m×20 m)内127株掘根倒木的形态指标、根系指标和立地条件,分析掘根差异的影响因子以及掘根木外形参数与根部土壤的关系.结果表明:不同树种的掘根数量差异显著,以冷杉受掘根危害最重,红松次之,榆树最轻.阔叶树种的抗掘根性能优于针叶树种.树木对掘根的抗性随胸径和树高的增加先快速降低后逐渐升高,分别在20 cm径级和14 m高度级处达到最低;树木尖削度和树冠投影面积越小,抗掘根性能越好;掘根率与林分密度呈显著负相关.处于湿地、缓坡、中低海拔处或迎风坡的树木掘根风险更大.掘根时受扰动土壤的深度、面积及体积与倒木胸径、树高及材积之间呈显著相关.  相似文献   

4.
This study examined differences in stand structure, tree species richness, and tree species diversity in relation to population density in Kampong Thom Province, Cambodia. Tree data were obtained from a 1997 forest inventory involving 60 clusters (540 plots) systematically distributed over 30% of the provincial forest area. Spatially referenced population data were obtained from the 1998 national population census. The average number of trees per cluster was 356/ha, the average basal area, 23 m2/ha, the average stand volume, 217 m3/ha, and the average aboveground biomass, 273 Mg/ha for all trees of DBH 10 cm and larger. The average species richness per cluster was 37 species, while average species diversity was measured as 0.916 using Simpson’s index and 2.98 by Shannon’s index. Significant negative correlations were generally found between population density surrounding clusters and tree density, basal area, stand volume, aboveground biomass, and species richness and diversity for three examined diameter classes (DBH of 10–30, ≥30, and ≥10 cm). As the distance from clusters for calculating population density increased, the correlation levels increased up to 5 or 7 km, depending on the variables and diameter class, and then stayed relatively constant for stand structure variables and decreased for species richness and diversity. The results indicate that evidence of disturbance was more pronounced at higher population density up to around 5 to 7 km. We suggest that introduction of greater controls on human disturbance should be a high priority for resource management and conservation in Kampong Thom Province and, presumably, Cambodia as a whole.  相似文献   

5.
Patch dynamics, tree injury and mortality, and coarse woody detritus were quantified to examine the ecological impacts of Hurricane Fran on an oak-hickory-pine forest near Chapel Hill, NC. Data from long-term vegetation plots (1990–1997) and aerial photographs (1998) indicated that this 1996 storm caused patchy disturbance of intermediate severity (10–50% tree mortality; Woods, J Ecol 92:464–476, 2004). The area in large disturbance patches (>0.1 ha) increased from <1% to approximately 4% of the forested landscape. Of the forty-two 0.1-ha plots that were studied, 23 were damaged by the storm and lost 1–66% of their original live basal area. Although the remaining 19 plots gained basal area (1–15% increase), across all 42 stands basal area decreased by 17% because of storm impacts. Overall mortality of trees >10 cm dbh was 18%. The basal area of standing dead trees after the storm was 0.9 m2/ha, which was not substantially different from the original value of 0.7 m2/ha. In contrast, the volume and mass of fallen dead trees after the storm (129 m3/ha; 55 Mg/ha) were 6.1 and 7.9 times greater than the original levels (21 m3/ha; 7 Mg/ha), respectively. Uprooting was the most frequent type of damage, and it increased with tree size. However, two other forms of injury, severe canopy breakage and toppling by other trees, decreased with increasing tree size. Two dominant oak species of intermediate shade-tolerance suffered the largest losses in basal area (30–41% lost). Before the storm they comprised almost half of the total basal area in a forest of 13% shade-tolerant, 69% intermediate, and 18% shade-intolerant trees. Recovery is expected to differ with respect to vegetation (e.g., species composition and diversity) and ecosystem properties (e.g., biomass, detritus mass, and carbon balance). Vegetation may not revert to its former composition; however, reversion of biomass, detritus mass, and carbon balance to pre-storm conditions is projected to occur within a few decades. For example, the net change in ecosystem carbon balance may initially be negative from losses to decomposition, but it is expected to be positive within a decade after the storm. Repeated intermediate-disturbance events of this nature would likely have cumulative effects, particularly on vegetation properties.  相似文献   

6.
Secondary succession following land abandonment, represented by a chronosequence of 15 old fields (0–80 years old) and two old-growth forests, was studied in the tropical montane cloud forest region of Veracruz, Mexico. The objective was to determine successional trajectories in forest structure and species richness of trees ≥5 cm DBH, in terms of differences in seed dispersal mode, shade tolerance, and phytogeographical affinity. Data were analyzed using AIC model selection and logistic regressions. Mean and maximum canopy height reached values similar to old-growth forest at 35 and 80 years, respectively. Species richness and diversity values were reached earlier (15 and 25 years, respectively) while basal area and stem density tended to reach old-growth forest values within 80 years. Along the chronosequence, the proportion of species and individuals of wind-dispersed trees declined, that of bird dispersed small seeded trees remained constant, while that of gravity and animal dispersed large seeded trees increased; shade-intolerant species and individuals declined, while intermediate and shade-tolerant trees increased. Shade-tolerant canopy trees were rare during succession, even in the old-growth forest. Tropical tree species were more frequent than temperate ones throughout the chronosequence, but temperate tree individuals became canopy dominants at intermediate and old-growth forest stages.  相似文献   

7.
 Stand structure and leaf area distribution of a laurel forest in the Agua García mountains of Tenerife are described. The site is situated at 820 m a.s.l., faces NNE, and has a humid mediterranean climate. Summer droughts are mitigated by relatively high air humidity and clouds. The natural mixed hardwood forest is composed of six major tree species: Laurus azorica (Seub.) Franco, Persea indica (L.) Spreng, Myrica faya Ait., Erica arborea L. and two species of Ilex (I. platyphylla Webb & Berth. and I. canariensis Poivet.). The experimental stand had a density of 1693 trees ha – 1, a basal area of 33.7 m2ha – 1, and a cumulated volume of above-ground parts of trees of 231 m3 ha – 1 with a corresponding dry mass of 204 ton ha – 1. Diameters at breast height ranged from 6 to 46 cm. Mean concentration of plant dry mass per volume was 1.17 kg m – 3. The vertical pattern of leaf area distribution in individual trees for all tree species was characterized by a Gaussian-like curve. Stand leaf area index was 7.8. These evergreen, broad-leaved (laurisilva or lucidophyllous) forests represent a relic forest that was widespread in the Mediterranean region some 20 million years ago. Our data illustrate some of the structural characteristics of this historically widespread forest type. Received: 2 December 1994 / Accepted: 6 November 1995  相似文献   

8.
The tree changes of 1.02 ha of montane forest at the Santa Lúcia Biological Station, southeastern Brazil, were analyzed using two surveys separated by an interval of 11 years with the aim of confirming the patterns of stability of structure and diversity over time. In the original survey all trees with diameter at breast height ≥6.4 cm were sampled. In second survey (this study), dead trees, survivors and recruits in the same forest were reported. The data suggest a dynamic balance of the forest structure because mortality (−1.06% year−1 for number of trees and −0.85% year−1 for basal area) was very close to recruitment (0.89% year−1) and ingrowth (1.05% year−1). The high diversity of the original survey (H′ > 5.2) was maintained by the turnover species. The main tree populations also showed stability of number of trees and basal area. This pattern was shared by most of the 28 local endemic species, ensuring the maintenance of their populations in the plot.  相似文献   

9.
The mountain zone of Yakushima Island is covered with a mixed conifer-broadleaved forest dominated by old-growth Cryptomeria japonica (L.f.) D. Don trees. Even though Yakushima Island has been frequently struck by typhoons with wind velocities exceeding 55 m s−1, the Cr. japonica trees in the mountain zone have survived for thousands of years without fatal damage. To evaluate the effect of storms on tree growth, the relationships between the stem diameter at breast height (DBH) and the heights of Cr. japonica and coexistent tree species were investigated. Two models based on an expanded allometric equation and a discontinuous piecewise allometric equation, respectively, to represent DBH–height relationships were evaluated. In all plots, the DBH–height relationship of Cr. japonica was discontinuous between small DBH and large DBH individuals. The tops of the large DBH individuals of Cr. japonica were lost to strong winds. However in each instance, they occupied the highest position in the canopy, even if they had lost their tops. In contrast, the DBH–height relationships of subcanopy broadleaved species were continuous in many plots and the equilibrium heights of the dominant broadleaved species were similar and almost in the same order regardless of the canopy heights of Cr. japonica. These results revealed a constant vertical structure in the Cr. japonica forest on Yakushima Island. Our results demonstrate a vertical niche segregation in the forest under high wind pressures and such vertical structure enables effective use of forest space and increases the basal area density.  相似文献   

10.
In order to reveal the characteristics of the vegetation affected by monsoons at the northern border of Paleotropics, a tree-by-tree census was conducted in the lowland forests in the southernmost Taiwan (Nanjenshan) and an adjacent islet (Lanyu). The census recorded a total of 109,060 individuals (≥1-cm diameter at breast height) belonging to 255 vascular tree species in 1330 quadrats (10 × 10 m). Two-way Indicator Species Analysis first classified forest types into two groups, Lanyu and Nanjenshan, reflecting biogeographical differences. Five subgroups were further classified, showing correlations with topographic position indices. Forests located on wind-exposed slopes, regardless of elevations, were characterised by low canopy height, high stem density, high proportion of small stems, and high proportion of warm-temperate-related species, compared with the wind-sheltered communities. However, there were no significant differences in basal area and species diversity. In comparison with other tropical forests, our forests are characterised by high stem density, low diversity and a lack of the pan-Paleotropical dominant Dipterocarpaceae. In conclusion, vegetation in the studied regions not only showed a transition characteristic between Paleotropics and Holarctic Kingdoms in terms of composition, but also showed differentiations caused by their biogeographical history and the interaction between topographic positions and wind stress from monsoons.  相似文献   

11.
Understanding the ecological mechanisms that allow a species to transition from an occasional understory component to the dominant type in the forest canopy is essential for predicting future shifts in the distribution of species. We investigated this issue with regard to yew, also because mature yew trees have been reported to inhibit self-regeneration and seedling survival, prompting concerns for the long-term preservation of the species. Our objectives were (a) to quantify spatial patterns of yew (Taxus baccata L.) populations near the southern limit of the species’ ecological distribution, (b) to determine the relationships between yew presence and topographic gradients, and (c) to answer the question of how yew regeneration is affected by such patterns and relationships. We analyzed three extensive yew populations (90–165 ha, including 3–12 thousand established individuals) that mostly occupy the understory of beech forests located in protected areas of the central Apennines (Italy). Overall, the realized niche of yew (either as established trees, saplings, or seedlings) followed the expected bell-shaped curve of a species response to an environmental gradient. Yew was mainly found at 1,000–1,600 m elevation on mesic exposures (north and west) and intermediate slopes (30–60%). Geostatistical analysis revealed that yew occurred in patches, as shown by variogram ranges of 40–110 m for yew tree basal area and regeneration abundance. Yew regeneration over the landscape was directly related to basal area of yew trees. At local scales (~10 m), presence of established trees favored regeneration in relatively less developed stands, whereas high density of mature yews suppressed regeneration. Healthy yew populations in beech forests had a minimum size of 0.5–3 ha. As yew density increased within these patches, regeneration dropped, so that yew conservation cannot be limited to presently occurring populations, despite the longevity and potential for vegetative reproduction of the species. Disturbance from grazing and wildfire was also found to impact yew survival. Long-term existence of yew in the Italian Apennines depends on maintaining and expanding old-growth beech forests that incorporate yew patches, and have a minimum continuous cover equivalent to a relatively undisturbed regime (10–50 ha).  相似文献   

12.
African forest elephants (Loxodonta cyclotis) are ecosystem engineers that browse and damage large quantities of vegetation during their foraging and movement. Though elephant trail networks and clearings are conspicuous features of many African forests, the consequences of elephant foraging for forest structure and diversity are poorly documented. In this study in northeastern Gabon, we compare stem size, stem density, proportional damage, species diversity, and species relative abundance of seedlings and saplings in the vicinity of seven tree species that produce elephant-preferred fruits (“elephant trees”) relative to control trees that do not. Across 34 survey trees, with a combined census area of 2.04 ha, we recorded data on 26,128 woody stems in three sizes classes. Compared with control trees, the area around elephant trees had the following: (a) a significantly greater proportion of damaged seedlings and a marginally greater proportion of damaged saplings (with 82% and 24% greater odds of damage, respectively); (b) no significant difference in stem density or species diversity; and (c) a significantly greater relative abundance of seedlings of elephant tree species. Increasing distance away from focal elephant trees was associated with significantly reduced sapling stem damage, significantly increased sapling stem density, and significantly increased sapling species diversity. Considered in sum, our results suggest that elephants can affect the structure and diversity of Afrotropical forests through their foraging activities, with some variation based on location and plant size class. Developing a more complete understanding of elephants’ ecological effects will require continued research, ideally with manipulative experiments.  相似文献   

13.
Although strip clear-cutting has a long history of use in the temperate zone, it was only recently introduced for timber extraction in tropical rain forests, where it is known as the Palcazú Forest Management System. In this system heterogeneous tropical forests are managed for native gap-dependent timber species by simulating gap dynamics through clear-cutting long, narrow strips every 40 years. As part of an assessment of the sustainability of this system, we evaluated the recovery of tree basal area, species richness, and composition after 15 years of regeneration on two strips (30 × 150 m) clear-cut in 1989 in Jenaro Herrera, Peru. Timber stocking and the effects of silvicultural thinning were assessed in both strips. The strips recovered 58–73% of their original basal area and 45–68% of their original tree species richness. Although both strips recovered more than 50% of their original composition, commercial species had lower basal areas and lower densities than in the forest before the clearing. Pioneer species with high basal areas remained dominant 15 years after the cutting. Silvicultural thinning in 1996 reduced the abundance of pioneer species in both strips, and increased the abundance of commercial species in one of the strips. Half of one strip was harvested by deferment-cut (only commercial trees >30 cm dbh and “other” species >5 cm dbh were cut); regeneration here had greater abundance of commercial species and lower abundance of pioneer species. The low stocking of commercial trees challenges the sustainability claims for this forest management system.  相似文献   

14.
Primates spend about half of their lives at sleeping sites, and their choice of sleeping sites may affect individual survival. We identified a total of 88 trees used by proboscis monkeys (Nasalis larvatus) as night sleeping sites on 16 nights from June to September 2008 in riverine, mangrove, and mixed mangrove–riverine forests along the Garama River, a tributary of the Klias River, in the west of Sabah, Malaysia. We recorded 11 variables for each tree, including the species, physical structure, distance from the riverbank, and connectivity with surrounding trees. We compared sleeping trees with 114 trees with ≥30 cm girth at breast height (GBH) located ≤50 m of the riverbank in 8 botanical plots (total 1 ha). Trees in the plots represented the general vegetation patterns of the study area. Choice of sleeping trees did not depend on the tree species. Although sleeping trees included trees ≤46 m from the river, those closer to riverbanks (5–35 m, n = 76) were more likely to be used as sleeping sites. Compared to the available trees, sleeping trees had larger trunks (mean±SD = 143.6 ± 56.9 cm GBH), and were taller (mean±SD = 34.3 ± 8.1 m), with greater number (median = 6; range = 12) and larger (mean±SD = 24.1 ± 15.2 cm circumference) main branches. They were also located near to other trees, with overlapping branches, creating good arboreal connectivity. Choice of sleeping trees by proboscis monkeys is likely to be related to risks of predation and injury from falling, as well as ease of social interaction and efficiency of locomotion.  相似文献   

15.
Stand growth and developmental processes were investigated in Pinus densiflora Siebold et Zucc. stands of different ages in the central eastern region of Korea. Stands were inventoried and five trees per stand were sampled for stem analysis, age estimation, and growth analysis. More than 80% of sampled trees in a stand were established within 3–5 years, and most stands had a single cohort structure. The initial growth of pine seedlings was slow, but the height growth accelerated beyond 2–3 m height, 5–10 years after establishment. Linear growth was maintained until 10–12 m height, at which suppressed trees fell behind and might die out. The young stand was composed of pure pines, while few pine seedlings and saplings were found in the understory of older stands. The peak of diameter growth rate occurred around 5–15 years after tree establishment, implying that competition begins during that period. The pine stand development follows four stages: (1) the young stage when the growth rate increases and peaks; (2) the height competition stage when trees focus on height growth for light while maintaining a narrow DBH and height distribution; (3) the differentiation stage when suppressed trees die out, and the DBH distribution becomes wider; and (4) the mature stage when stands have a multi-canopy structure with a wide DBH and height distribution, while the understory is dominated by other tree species. The changes in growth rates and stand structure through forest development would be implemented to predict alterations of above-ground carbon sequestration rates.  相似文献   

16.
Transpiration of a central European endemic tree species, Pinus rotundata Link, growing on a wooded peat bog in the Třeboň Basin, Czech Republic, was studied in 1999–2000. Transpiration was measured by sap flow techniques (heat field deformation method) on individual trees and scaled up to stand level. The radial patterns of sap flow density showed narrow peaks in the outer part of the xylem, sapwood accounted for 47–60% of the xylem radius and 72–84% of the xylem basal area. Adult trees tolerated well both short-term flooding during the growing season and drawdown of the water table to a depth of 60 cm below ground level. The maximum and mean daily transpiration rates were 3.0 and 1.8 mm per day, and were thus similar to published data for Scots pine. The seasonal total transpiration (25 April–20 October 2000, 180 days) amounted to 322 mm, or 62% of the potential evapotranspiration over this period. This canopy transpiration was compensated by 319 mm of precipitation. The difference between the accumulated precipitation and the accumulated transpiration (derived from seasonal sap flow measurements) closely mimicked the seasonal course of the water table.  相似文献   

17.
Competition between neighboring plants plays a major role in the population dynamics of tree species in the early phases of humid tropical forest succession. We evaluated the relative importance of above- versus below-ground competition during the first years of old-field succession on soil with low fertility in Southern Mexico, using the premise that competition for light is size-asymmetric, unlike competition for nutrients. Plant growth is thus expected to be disproportionally impeded by larger neighbors. We studied how growth and survival of 3.5–5.5 m tall saplings of Cecropia peltata and Trichospermum mexicanum, two pioneer species that dominate the secondary forests in the study region, varied with the abundance and size of neighboring trees in 1–2 year old secondary vegetation. We found that local neighborhood basal area varied 10-fold (3 to 30 cm2 m-2) and explained most of the variation in diameter and height growth of the target saplings. Most growth variables were strongly affected by the neighbors bigger than the focal trees with no significant additive effect of the smaller neighbors, indicating asymmetric competition. Smaller neighbors did have a small but significant additive effect on the diameter growth of Cecropia saplings and stem slenderness of Trichospermum saplings. We conclude that competition for light was more important than belowground competition in this initial phase of moist tropical forest successional, despite the low soil fertility.  相似文献   

18.
以九龙山国家级自然保护区的主要公益林杉木人工林作为研究对象,选择具有代表性的受灾区域,自海拔700 m至900 m设置样地,共10块样地,总面积4 000 m2。分析其受2008年初严重冰雪灾害破坏及灾后萌生情况与胸径、树高、尖削度、海拔之间的关系。结果表明:1)杉木人工林损害严重,其中断冠、断干植株比例较高,而掘根和冻死植株相对较少;杉木具有极强的萌生能力,以断冠杉木的萌生能力最强。2)不同胸径、树高、尖削度的杉木对于冰雪灾害的抵御能力及萌生能力存在一定差异,小径级矮小的个体受灾较重,易被冻死和掘根,大径级的较高个体受灾相对较轻,主要表现为断冠和断干危害,且不同径级下的受灾杉木上部萌生均占较大比例。3)杉木的抵御能力和萌生能力与海拔存在一定的关系,高海拔地区杉木受灾较重,而中海拔地区的杉木萌生能力相对较强。  相似文献   

19.
Heartwood and sapwood development was studied in 18-year-old Eucalyptus globulus trees from pulpwood plantations with different spacings (3 × 2, 3 × 3, 4 × 3, 4 × 4 and 4 × 5 m), on cross-sectional discs taken at breast height. The trees possessed a large proportion of heartwood, on average 60% of the wood cross-sectional surface. Spacing was a statistically significant source of variation of heartwood area, which ranged between 99 and 206 cm2 for the closer (3 × 2) and wider (4 × 5) spacings, respectively. There was a positive and high statistical significant correlation between heartwood diameter and tree diameter (heartwood diameter = −0.272 + 0.616 dbh; r 2 = 0.77; P < 0.001), and larger trees contained more heartwood regardless of spacing. Heartwood proportion in cross-section remained practically constant between spacings but increased with tree diameter class: 55.1, 62.2, 65.0 and 69.5% for diameter at breast height classes <15, 15–20, 20–25 and >25 cm, respectively. The sapwood width did not depend on tree diameter growth and remained practically constant at an average of 18 mm (range 15–21 mm), but sapwood area showed a good linear regression with tree diameter. Therefore, tree growth enhancement factors, such as wide spacings, will induce formation of larger heartwoods that can negatively impact raw-material quality for pulping. The increase in heartwood in relation with tree dimensions should therefore be taken into account when designing forest management guidelines.  相似文献   

20.
Allometric equations to estimate aboveground biomass (AGB) and plant part biomasses (PPB) of three mangrove species, Rhizophora mangle, Avicennia schaueriana, and Laguncularia racemosa, were determined in Itamaracá, Pernambuco, Brazil (7°48′44″S and 34°49′39″W). Twenty-three to thirty-six trees of each species, ranging in height (H) from 1.6 to 11.8 m and in diameter, at breast height or above prop roots (D), from 2 to 21 cm, were measured, cut, and separated into stems, branches, leaves, and prop roots. Biomass proportions in each tree part were similar among species, excluding prop roots: stems 37–47%, branches 41–46%, and leaves 11–17%. Prop roots represented 37% of AGB in R. mangle. Tree size had a significant but not large influence on biomass distribution among plant parts: as stem diameters increased the proportions allocated to leaves decreased and those to stems and branches increased. AGB and PPB were significantly related to D and D2 × H and the best fittings were obtained with power equations. A few equations from literature fitted the data reasonably well for AGB of one or two of the species but resulted in large errors for the others. Applying the equations to previous measurements of tree diameters in a sample area, AGB for the mangrove site was estimated at 105 Mg ha−1, with 78, 19, and 3% corresponding to biomasses of R. mangle, L. racemosa, and A. schaeuriana trees, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号