首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
色彩图案作为最显著的外部形态特征之一,在动物生存与交流中起着重要的作用。为了解鳜(Siniperca chautsi)早期发育过程中这一形态特征变化,采用CCD-Adapter解剖镜对鳜早期(胚胎期至出膜40日龄)体表色素细胞种类与分布、主要图案(条、带、斑)的形成过程进行了观察,同时对不同部位皮肤进行组织切片观察。结果显示,胚胎期,最早观察到黑色素细胞,位于卵黄囊和油球,出膜前,头部出现黄色素细胞;出膜后,黑色素细胞发育最为显著,红色素细胞出现在眼球后部和躯干前部;5日龄后,黄色素细胞发育增加,鱼体各部位均有分布,黑色素细胞继续发育,图案形成开始。鳜早期色彩图案形成过程:(1)躯干纵带:5日龄,背部出现少量黑色素,14日龄,背鳍基部黑色素与腹部黑色素相连;(2)头部过眼条带:10日龄,鳃盖后上方黑色素明显增多,12日龄,眼球后部经鳃盖后上缘至背部前端的条带形成,17日龄,上颌至眼球前部的条带形成;(3)头顶条带:6日龄,头顶正上方黑色斑点增多,18日龄,头部上方黑色斑块分别向前、后延伸,23日龄,头顶正上方黑色条带基本形成;(4)躯干斑块:8日龄,尾部底端出现一个较小的黑色斑块,15日龄,尾柄前部出现3个不规则黑色斑块,25日龄,躯干中后部5个近圆形黑色斑块形成。结果表明,鳜胚胎期至出膜40日龄,体表出现黑色素细胞、黄色素细胞和红色素细胞,体色以黑色为主,主要条带或斑块在仔鱼5日龄后按不同方式逐渐形成,不同皮肤部位的色素层组成与分布方式不同。  相似文献   

2.
变色龙皮肤各层内,包含着各种特殊的色素细胞,如外层皮肤下面,有一层黄色素与绿色素细胞,接着是一层为蓝、白、红、橙和紫色素细胞,最深一层是具有棕黑色素的黑色素细胞,这种细胞有许多分支,会将黑色素从中央扩大到周围,并达到上层皮肤,从而掩盖了白色素细胞层,使皮肤变黑。其他色素也会扩大或缩小,  相似文献   

3.
鱼鳍和鳞片色素组成的比较观察   总被引:1,自引:0,他引:1  
鱼类体色观察常以鳞片为材料,鱼鳍和鳞片都是皮肤的衍生物,采用Nikon光学显微镜系统,对白鲫和红鲫鱼鳍及相邻体位鳞片的色素细胞组成、分布及形态结构等进行了比较观察。鱼鳍薄而透明,显微镜下观察发现鱼鳍从近体端到远体端在色素细胞总体分布上呈现出由密集逐渐稀疏的变化特征。白鲫背、胸、腹、臀、尾鳍五种鱼鳍中都分布有黑色素细胞、黄色素细胞和红色素细胞三种色素细胞类型。红鲫鱼鳍中则仅观察到黄色素细胞和红色素细胞两种色素细胞类型。同时不同部位鱼鳍与其基部相邻鱼鳞上层在色素细胞的组成上是一致的。在白鲫和红鲫的鳞片中均存在着丰富的虹彩细胞,但在鱼鳍中未观察到典型的虹彩细胞的分布,提示在鱼类体色发育中,虹彩母细胞可能具有与其它几种色素母细胞不同的迁移途径。  相似文献   

4.
鱼类的体色由基本色素细胞相互配合而成,色素细胞主要有4种类型:黑色素细胞、红色素细胞、黄色素细胞和虹彩细胞。AG1478是针对酪氨酸激酶(Tyr)的一种新型抑制剂。Tyr是黑色素生成过程中的关键酶,在黑色素细胞中呈特异性表达。本文主要阐述了白鲫四种色素细胞以及两种不同形态黑色素细胞的超微结构观察,探讨了AG1478抑制剂对白鲫早期体色发育的影响,实验结果表明抑制剂对白鲫早期体色发育没有明显影响。  相似文献   

5.
曼龙鱼色素细胞的显微观察   总被引:1,自引:0,他引:1  
李小兵  郑曙明  吴青 《四川动物》2012,31(4):538-540,690
在显微镜下分别观察并用CCD摄像系统记录曼龙鱼色素细胞的显微结构特点。组成曼龙鱼的色素细胞为黑色素细胞、黄色素细胞、红色素细胞和虹彩细胞4种。黑色素细胞核较大,含黑色和棕色的色素颗粒,色彩呈黑色或褐色,在鱼体表层皆有分布,有两种形态:一种树突状分枝不明显,个体相对较小;另一种树突状分支多且较为粗大,延伸成放射状,颜色较深。黄色素细胞和红色素细胞核较小,分别含黄色素颗粒和红色素颗粒,色彩分别呈黄色或桔黄色、浅红色或紫红色。虹彩细胞核最小,含鸟粪素颗粒,呈白色或银白色,仅分布在鳞片表层。  相似文献   

6.
鱼类体色发育在生物进化、生理生态等方面具有重要的意义,豹纹鳃棘鲈是一种体色变异丰富的珊瑚礁鱼类,在不同环境中呈现出显著差异的体色。本文选取了豹纹鳃棘鲈体色差异个体,并对不同部位的皮肤颜色、色素分布和相关色素酶含量进行了检测和分析。结果显示,鱼体表皮分布着大量黑色素细胞和红色素细胞。黑色个体的黑色素细胞密度较大、黑色素含量较高,黑色素酶含量较低;而红色个体的红色素细胞密度更大、胡萝卜素与类胡萝卜素含量更高,黑色素酶的含量也更高。实验结果表明,豹纹鳃棘鲈的体色差异与黑色素颗粒的聚集、分散程度以及黑色素代谢酶的含量相关,体色鲜艳程度与红色素细胞数量以及胡萝卜素和类胡萝卜素含量相关。本文解释了红黑豹纹鳃棘鲈体色在色素和酶含量方面的差异,为进一步研究其体色变异机制提供了理论依据。  相似文献   

7.
为了探究感红光视蛋白2基因opn1lw2在红光诱导斑马鱼(Danio rerio)皮肤色素细胞形成中的作用,针对AB品系野生型斑马鱼利用CRISPR/Cas9基因编辑技术敲除感红光视蛋白2基因opn1lw2,构建opn1lw2缺失的纯合opn1lw2~(-/-)品系。使用光强(800±100)lx的红光LED灯(每天光照24 h)对15日龄野生型斑马鱼和opn1lw2~(-/-)品系斑马鱼进行60 d水面照射,发现野生型斑马鱼背部皮肤黑色素细胞数量显著多于opn1lw2~(-/-)品系斑马鱼。实时荧光定量PCR分析发现,黑色素细胞标记基因kit在野生型斑马鱼背部皮肤表达量显著高于opn1lw2~(-/-)品系,黄色素细胞标记基因csf1ra和虹彩细胞标记基因pnp4a在opn1lw2~(-/-)品系及野生斑马鱼背部皮肤表达无显著差异。表明红光能通过opn1lw2基因调控斑马鱼背部皮肤黑色素细胞的形成,但不影响皮肤黄色素细胞和虹彩细胞的形成;而且,调控黑色素细胞分化的α-MSH促黑激素的前体基因pomca在红光持续照射60d的opn1lw2~(-/-)品系斑马鱼背部皮肤中的表达显著低于野生型,表明红光通过opn1lw2基因调控pomca基因的表达从而诱导黑色素细胞的形成。实时荧光定量PCR检测发现,野生型斑马鱼皮肤中视黄醛脱氢酶基因raldh3表达量显著高于opn1lw2~(-/-)品系,而视黄醛脱氢酶基因raldh2的表达,在两种类型斑马鱼中没有差异,表明opn1lw2基因可介导红光诱导视黄醛脱氢酶基因raldh3表达,进而调控黑色素细胞的形成。这些结果对于深入理解红光诱导鱼类皮肤色素细胞形成有重要帮助。  相似文献   

8.
高中《生物》教材中,曾谈到“生物体内激素的含量极少,却起着很重要的调节作用”。那么,利用黑斑蛙(Rananigromaculata)的变色实验,可以说明激素的生理作用。1原理黑斑蛙在我国分布很广。生活于稻田、池塘或小河旁的草丛中,其背部呈深绿色或黄绿色,有不规则的黑斑纹和短纵脊,还有2条较宽的长背侧纵褡。其表皮和真皮内均含有黑色素细胞。色素细胞的胞质流动可将色素颗粒扩散至细胞外周或集中于细胞的中央。色素扩散就使皮肤颜色变深,集中就会使皮肤颜色变浅。而黑色素细胞是受垂体分泌的促黑激素控制的,促黑激素能够使皮肤黑色素…  相似文献   

9.
动物的色素     
动物的保护色、警戒色、婚姻色,都是卟啉(porphyrin)色素、多烯色素、吲哚色素三者在机体內按不同的生理机能相互配合,而表現于体外。 (一)色素细胞的分布动物色素細胞一般位于真皮內,在无脊椎动物中,三种色素細胞的位置多系并行排列;在脊椎动物內,三种色素細胞的位置多系上下排列的:含有吲哚色素的黑色素細胞在最上层,含有多烯色素的紅色与黄色細胞在中间层,含有多烯色素的青色細胞在最下层。含有卟啉色素的无色細胞位于黑色細胞与青色細胞之間并散在于紅、黄二色細胞的周围。  相似文献   

10.
采用光镜和扫描电镜对金佛拟小鲵(Pseudohynobius jinfo)幼体皮肤进行组织学和形态学观察。金佛拟小鲵幼体皮肤由表皮和真皮构成。不同部位皮肤厚度不同,头部背侧皮肤最薄,其厚度为(45.99±12.77)μm,尾部腹侧的皮肤最厚,其厚度为(95.21±42.72)μm。表皮角质层仅躯干背部和尾部明显,由仍具有一定生理活性的复层扁平上皮细胞构成。皮肤腺体包括黏液腺和颗粒腺。黏液腺广泛分布于身体各个部位的皮肤,颗粒腺呈区域性分布,仅见躯干部和尾部皮肤,其体积大于黏液腺。毛细血管多分布于真皮疏松层腺体周围,与表皮层紧密接触并凸向表皮。色素细胞主要分布于表皮和疏松层的交界处,呈多细胞聚集的状态,形成厚度不一的色素层。  相似文献   

11.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

12.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

13.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

14.
To determine whether or not the erythrophore originates from xanthophores in the dorsal skin of the brown frog, Rana ornativentris, we morphologically examined the differentiation and migration of the two chromatophore types and their pigmentary organelle formation. At an early tadpole stage, three kinds of chromatophores, xanthophores, iridophores, and melanophores, appeared in the subdermis, whereas the erythrophore did so just before the foreleg protrusion stage. By the middle of metamorphosis, most chromatophores other than erythrophores had migrated to the subepidermal space. Erythrophores, which appeared late in the subdermis, proliferated actively there during metamorphosis and finished moving into the subepidermal space by the completion of metamorphosis. Carotenoid vesicles and pterinosomes within the erythrophores and xanthophores showed several significant differences in structure. In xanthophores, carotenoid vesicles were abundant throughout life, whereas those in erythrophores decreased in number with the growth of the frogs. The fibrous materials contained in the pterinosomes were initially scattered but soon formed a concentric lamellar structure. In erythrophores, the lamellar structure began to form at the periphery of the organelles but at the center in xanthophores. In addition, the pterinosomes of erythrophores were uniform in size throughout development, while those of xanthophores showed a tendency to become smaller after metamorphosis. The pterinosomes of xanthophores were significantly larger than those of erythrophores. These findings suggest that an erythrophore is not a transformed xanthophore, although they resemble each other closely in many respects.  相似文献   

15.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

17.
The aim of this study was to describe the ultrastructure and arrangement of pigment cells in the leopard gecko (Eublepharis macularius) skin to explain how wild‐type coloration is formed. The study also attempted to explain, on a morphological level, how skin colour changes occur. Samples of leopard gecko skin were collected from wild‐type coloration adult specimens. The morphology of pigmented cells was determined using light microscopy on haematoxylin and eosin (H&E) stained sections and in transmission electron microscopy. These studies indicate that skin of E. macularis contains xanthophores and melanophores but lacks iridophores and that this is probably related to nocturnal activity. The number and distribution of xanthophores and melanophores determines the skin colour and pigmentation pattern. The colour changes depend on the arrangement of characteristic protrusions of melanophores and the degree of filling them with melanosomes.  相似文献   

18.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

19.
Summary The barred pigment pattern (Lehman 1957) of the axolotl larva is best observed from stage 41 onwards, where it already consists of alternating transverse bands of melanophores and xanthophores along the dorsal side of the trunk. The present study investigateswhen the two populations of neural crest derived chromatophores, melanophores and xanthophores become determined andhow they interact to create the barred pigment pattern. The presence of phenol oxidase (tyrosinase) in melanophores (revealed by dopa incubation) and pteridines in xanthophores (visualized by fluorescence) were used as markers for cell differentiation in order to recognize melanophores and xanthophores before they became externally visible. It was found that melanophores and xanthophores were already determined in the premigratory neural crest, at stages 30/31 and 35–36, respectively. Between stages 35–36 and 38 they were arranged in a prepattern of several distinct, mixed chromatophore groups along the dorsal trunk, morphologically correlated in the scanning electron microscope with humps on the original crest cell string. While the occurrence of xanthophores was restricted to the chromatophore groups and around them, melanophores were already uniformly distributed in the dorsolateral flank area, having migrated from trunk neural crest portions including the groups. The bar component of the pigment pattern was subsequently initiated by xanthophores, which caused melanophores in and around the chromatophore groups to fade or become invisible. The barred pattern was established by the formation of alternating clusters of like cells, melanophores and xanthophores.  相似文献   

20.
In the periodic albino mutant (a(p)/a(p)) of Xenopus laevis, peculiar leucophore-like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild-type (+/+). These leucophore-like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of alpha-melanocyte stimulating hormone (alphaMSH), and (4) containing an abundance of bizarre-shaped, reflecting platelet-like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore-like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to alphaMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore-like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore-like cells are essentially similar to melanophores of the wild-type with respect to their localization in the skin and manner of response to alphaMSH, (3) the leucophore-like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet-like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore-like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号