首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放   总被引:1,自引:0,他引:1  
利用静态箱-碱液吸收法研究了三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放速率,讨论了影响CO2释放的环境因素,估算了枯落物分解的CO2释放对于总释放的贡献。结果表明,生长季,小叶章沼泽化草甸和小叶章湿草甸各部分CO2释放均具有明显的时间变化特征,温度和水分是重要制约因素。两类草甸湿地的平均土壤呼吸速率分别为4.33g•m-2•d-1和6.15g•m-2•d-1,枯落物分解的CO2平均释放速率分别为1.76g•m-2•d-1和3.10g•m-2•d-1,枯落物分解的CO2释放占总释放量的31%和35%,说明在碳素由地上植物碳库转移到地下土壤碳库的过程中,湿地枯落物是一个不可忽略的碳损失源。  相似文献   

2.
开垦对克氏针茅草地生态系统碳通量的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
 植被–大气间CO2净交换及其对环境变化的响应是目前全球变化研究的热点问题。该研究通过同化箱式法, 在内蒙古农牧交错带对比研究生长季草地生态系统和耕种多年的小麦田生态系统碳通量的变化, 以探讨该地区碳通量的变化规律及影响碳通量主要因子, 并揭示农田开垦对草原碳通量的影响。结果显示: 两个生态系统的群落净气体交换(Net ecosystem exchange, NEE)有明显的季节变化。整个测定期间, 草地生态系统的净气体交换NEE的最高值为–11.26 µmol CO2•m–2•s–1, 平均群落净气体交换为–5.33 µmol CO2•m–2•s–1; 小麦田群落NEE最大值为–12.29 µmol CO2•m–2•s–1, 平均群落净气体交换为–7.66 µmol CO2•m–2•s–1。分析发现, 叶面积指数LAI是影响该地区生态系统NEE的主要因子, 相对贫瘠的土壤也是限制该地区生态系统碳固定的一个重要因子。因小麦的生长特性, 在生长中后期, 小麦田生态系统NEE随LAI的变化没有草地生态系统的敏感。此外, 较低的土壤含水量限制了小麦田群落呼吸, 使得小麦田群落呼吸对温度的敏感性降低。  相似文献   

3.
落叶松和水曲柳人工林细根生长、死亡和周转   总被引:12,自引:3,他引:9       下载免费PDF全文
 细根周转是陆地生态系统碳分配格局与过程的核心环节,而细根周转估计的关键是了解细根的生长和死亡动态。该研究以18年生落叶松(Larix gmelinii)和水曲柳(Fraxi nus mandshurica)人工林为对象,采用微根管(Minirhizotron)技术对两树种0~40 cm深度的细根生长和死亡动态进行了为期1年的观测,研究了两树种细根在不同土层深度的生长与死亡动态、细根周转以及与土壤有效氮含量、土壤温度、大气温度和降水的关系。结果表明:1) 落叶松平均细根生长(Root length density production, RLDP)0.0045 mm•cm-2•d-1)明显低于水曲柳RLDP(0.0077 mm•cm-2•d-1)。两个树种细根平均RLDP在表层(0~10 cm)最大,而底层(30~40 cm)最小 ,两树种平均细根死亡(Root length density mortality, RLDM)也表现同样规律 。水曲柳春季生长的细根占41.7%,夏季占39.7%,而落叶松细根生长分别是24.0%和51.2%,水曲柳细根死亡主要发生在春季(34.3%) 和夏季(34.0%),而落叶松细根死亡主要发生在夏季和秋季(分别占28.5%和32.3%),两 树种细根生长与死亡在冬季均较小;2)落叶松细根年生长量(0.94 mm•cm-2•a-1)和年死亡量(0.72 mm•cm-2•a-1)明显低于水曲柳(1.52和1.21 mm•cm-2•a-1),两树种细根表层年生长量和年死亡量均最高,底层最低。落叶松细根年周转为3.1次•a-1(按年生长量计算)和2.4次•a-1(按年死亡量计算),相比较,水曲柳细根年周转分别为2.7次•a-1和2.2次•a-1;3)土壤有效氮含量、土壤温度、大气温度和降水综合作用影响细根生长和死亡动态,可以解释细根生长80%的变异和细根死亡95%以上的变异。  相似文献   

4.
东北地区森林生态系统因其面积大,碳贮量高而在本地区和我国碳平衡中占有重要的地位。土壤表面CO2通量(RS)作为陆地生态系统向大气圈释放的主要CO2源,其时空变化直接影响到区域碳循环。该研究采用红外气体分析法比较测定我国东北东部次生林区6个典型的森林生态系统的RS及其相关的土壤水热因子,并深入分析土壤水热因子对RS的影响。研究结果表明:影响RS的主要环境因子是土壤温度、土壤含水量及其交互作用,但其影响程度因生态系统类型和土壤深度而异。包括这些环境因子的综合RS模型解释了 67.5%~90.6%的RS变异。在整个生长季中,不同生态系统类型的土壤温度差异不显著 ,而土壤湿度的差异显著(α= 0.05)。蒙古栎(Quercus mongolica)林、红松(Pinus koraiensis)林、 落叶松(Larix gmelinii)林、硬阔叶林、杂木林和杨桦(Populus davidiana_Betula platyphylla)林的RS变化范围依次为:1.89~5.23 µmol CO2•m-2•s-1,1.09~4.66µmol CO2•m-2•s-1,0.95~3.52µmol CO2•m-2•s-1,1. 13~5.97µmol CO2•m-2•s-1,1.05~6.58µmol CO2•m-2•s-1和1.11~5.76µmol CO2•m-2•s-1。RS的季节动态主要受土壤水热条件的驱动而呈现单峰曲线,其变化趋势大致与土壤温度的变化相吻合。Q10从小到大依次为:蒙古栎林2.32,落叶松林2 .57,红松 林2.76,硬阔叶林2.94,杨桦林3.54和杂木林3.55。Q10随土壤湿度的升高而增大;但超过 一定的阈值后,土壤湿度对Q10起抑制作用。该研究结果强调对该地区生态系统 土壤表面CO2通量的估测应同时考虑土壤水热条件的综合效应。  相似文献   

5.
千烟洲红壤丘陵区人工针叶林土壤CH4排放通量   总被引:3,自引:0,他引:3       下载免费PDF全文
 CH4在温室效应中起着重要作用,为估算中亚热带CH4的源汇现状,评价森林生态系统对温室效应的影响,采用静态箱-气相色谱法研究了千烟洲红壤丘陵区人工针叶林的土壤CH4 排放通量特征及水热因子对其的影响。对2004年9月~2005年12月期间的观测结果分析表明 :千烟洲人工针叶林土壤总体表现为大气CH4的吸收汇,原状林地土壤(Forest soil)情况下,CH4通量的变化为7.67~-67.17μg&;#8226;m-2&;#8226;h-1,平均为-15.53μg&;#8226;m-2&;#8226;h-1;无凋落物处理(Litter-free)情况下,CH4通量的变化是9.31~-90.36 μg&;#8226;m-2&;#8226;h-1,平均为-16.53μg&;#8226;m-2&;#8226;h-1。 二者对土壤CH4的吸收表现出明显的季节变化规律,秋>夏>冬>春,但无凋落物处理CH4变化幅度较原状林地土壤大,无凋落物处理吸收高峰出现在10月,最低值出现在翌年3月,原状林地土壤则分别在9月和翌年2月,均提前1个月。对土壤CH4吸收通量与温度和湿度的相关分析表明: 无论是原状林地土壤还是无凋落物处理情况下,土壤CH4通量都与地下5 cm的温度和湿度相关性最高。偏相关分析反映了不同季节水热配置对土壤吸收CH4通量的影响:冬季为12月~翌年2月,温度起主要作用;雨季3~6月,温度作用为主,随着温度的升高而升高,水分作用微弱;7~8月,CH4吸收通量随着湿度的降低而增加,但高温限制了CH4的吸收;秋季(9~11月)水热配置适宜,CH4通量达到高峰值。总之,CH4吸收通量随着温度的升高和 湿度的降低而增大,但温度过高会抑制其吸收。  相似文献   

6.
李宽意  刘正文  胡耀辉  王传海 《生态学报》2006,26(10):3221-3224
报道了2005年7~9月在太湖试验基地进行的椭圆萝卜螺对沉水植物牧食的实验结果。结果表明,椭圆萝卜螺对3种沉水植物的平均牧食率为7.87mg•g-1•d-1,其中对苦草的牧食率最高(13.63 mg•g-1•d-1),马来眼子菜次之(9.66mg•g-1•d-1),轮叶黑藻最低(0.31mg•g-1•d-1),且牧食率与螺规格呈显著负相关。椭圆萝卜螺对沉水植物的牧食具有选择性,喜食苦草而较少选食其他两种沉水植物。椭圆萝卜螺的食物选择性能力与其规格有关,随着生长对沉水植物的选择性加强。探讨了椭圆萝卜螺对沉水植物的选食机理。   相似文献   

7.
三江平原生长季沼泽湿地CH4、N2O排放及其影响因素   总被引:16,自引:2,他引:14       下载免费PDF全文
 2003年6~9月采用静态箱_气相色谱法,对三江平原生长季不同淹水条件下沼泽湿地CH4、N2O的排放进行了同步对比研究,并探讨了影响气体排放的主要影响因素。结果表明, 生长季沼泽湿地CH4和N2O排放具有明显的时空变化特征。长期淹水的毛果苔草(Carex lasiocarpa)和漂筏苔草(Carex pseudocuraica)植物带CH4的平均排放强度分别为259.2和273.6 mg•m-2•d-1,高于季节性淹水的小叶章(Deyeuxia angustifolia)植物带的排放强度(38.16 mg•m-2•d-1)(p<0.00 0 1);而生长季N2O的平均排放强度分别为0.969、0.932 和0.983 mg•m-2•d-1, 植物带间无显著差异(p=0.967)。相关分析表明,气温和5 cm深地温对沼泽湿地CH4生长季排放通量的影响较大,而水位则是影响长期淹水沼泽N2O排放通量的主要因素;不同类型湿地间CH4平均排放强度的差异主要受水位的控制,而强烈的还原环境可能是导致不同类型湿地具有近似的N2O排放强度的原因。  相似文献   

8.
江西千烟洲人工针叶林下狗脊蕨群落生物量   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据野外调查和实验分析研究了江西省千烟洲人工针叶林下狗脊蕨(Woodwardia japonica)群落的生物量、细根生物量、净初级生产力(Net primary productivity, NPP)、 比叶面积(Specific leaf area, SLA) 和叶面积指数(Leaf area index, LAI)等。通过叶片参数和地上生 物量的相关关系建立了狗脊蕨单株地上生物量估算模型,分别 为W1=0.021H1.545(R2=0.790)和W1=2.518(D2H)0 .616(R2=0.894;H为株高 ,D为地径)。人工针叶林下灌草层地上生物量为367.8 g&;#8226;m-2(52~932 g&;#8226;m-2),凋落物为1 631 g&;#8226;m-2(672~2 763 g&;#8226;m-2),分别占 乔木层地上生物量的4.7%(1.55%~13.2%)和20.7%(7.6%~32.1%)。狗脊蕨群落地上生物量和NPP分别为266.6 g&;#8226;m-2和88.67 g&;#8226;m-2&;#8226;a -1 ,其中狗脊蕨种群占73.7%;地下生物量为212.6 g&;#8226;m-2。狗脊蕨的SLA和叶干物质含量(Leaves day mutter content, LDMC)分别为144.0 cm2&;#8226;g-1和31.99%,二者之间呈显著负相关;最佳叶面积估算模型为S=21.922 6-0.152L2+0.000 9L3(9.0≤L(叶片长度)≤23.5;1.4≤W ( 叶片宽度)≤5.9)。狗脊蕨种群的LAI为1.8。土壤含水量对狗脊蕨生物量有显著影响。群落生物量与土壤有机质和全氮含量正相关  相似文献   

9.
在深圳市内伶仃岛薇甘菊危害的不同群落生境中,设立9块样地81个小样方,用森草净(即70%嘧碘降水溶性粉剂)杀灭样地中的薇甘菊施量为0.0001~0.02 g•m-2,结果表明:各浓度的森草净杀灭效果均较好,杀灭率随着用药量的增加而提高;在坡地和溪谷生境中,森草净用药量分别为0.05~0.1 g•m-2、>0.2 g•m-2能较彻底地杀灭薇甘菊。应用HPLC法检测样地土壤中嘧磺隆残留量,溪谷土壤中嘧磺隆半衰期C=C0•e-0.083TT1/2=8.4,施药后37 d消解95.9%,坡地高浓度级半衰期C=C0•e-0.046TT1/2=15.1 d,施药后37 d消解85.0%,坡地低浓度级半衰期C=C0•e-0.090T, T1/2=7.7 d,施药后15 d消解742%。不同浓度森草净处理样地,施药后7、15、37 d均可检测到嘧磺隆,并且含量越来越小,但施药后68 d的土样,均未检测到嘧磺隆的存在。  相似文献   

10.
 亚热带杉木(Cunninghamia lanceolata)和马尾松(Pinus massoniana)在我国森林资源中占有十分重要的地位, 研究它们的土壤与表层凋落物的呼吸有助于了解它们的碳源汇时空分布格局及碳循环过程的关键驱动因子。采用Li-Cor 6400-09连接到Li-6400便携式CO2/H2O分析系统测定湖南两种针叶林群落(2007年1月至12月)的土壤呼吸及其相关根生物量和土壤水热因子。研究结果表明: 杉木和马尾松群落中土壤呼吸的季节变化显著, 在季节动态上的趋势相似, 都呈不规则曲线格局, 全年土壤呼吸速率平均值分别为186.9 mg CO2&#8226;m–2&#8226;h–1和242.4 mg CO2&#8226;m–2&#8226;h–1。从1月开始, 两种群落的土壤呼吸速率由最小值33.9 mg CO2&#8226;m–2&#8226;h–1和38.6 mg CO2&#8226;m–2&#8226;h–1随着气温的升高而升高, 杉木群落到7月底达到全年中最大值326.3 mg CO2&#8226;m–2&#8226;h–1, 而马尾松群落到8月中旬达到最大值467.3 mg CO2&#8226;m–2&#8226;h–1, 土壤呼吸的季节变化与土壤温度呈显著的指数相关, 土壤温度可以分别解释土壤呼吸变化的91.7%和78.0%, 和土壤含水量呈二次方程关系, 土壤含水量可以解释土壤呼吸变化的5.4%和8.4%。由土壤呼吸与土壤温度拟合的指数方程计算Q10值, 杉木和马尾松群落中全年土壤呼吸的Q10值分别为2.26和2.13, Q10值随着温度升高逐渐减小。两种群落土壤呼吸的差异主要受群落植被的根生物量、群落的凋落物量的影响。  相似文献   

11.
半干旱区不同垄沟集雨种植马铃薯模式对土壤蒸发的影响   总被引:13,自引:0,他引:13  
通过垄沟集雨种植马铃薯试验,研究了不同垄沟集雨种植模式对土壤蒸发的影响.结果表明,在马铃薯全生育期,垄上覆盖塑料薄膜(CR)处理土壤蒸发量为122.9~165 mm,垄上原土夯实不覆膜(UR)处理土壤蒸发量为90.9~101.2 mm,无垄带状种植(CK) 土壤蒸发量为80.7 mm.其中,覆膜垄处理CR60在马铃薯成熟期土壤蒸发强度最大,达2.6 mm·d-1,平均为1.46 mm·d-1,而对照的土壤蒸发强度为0.65 mm·d-1;不覆膜土垄处理(UR30)土壤蒸发强度苗期最小,只有0.2 mm·d-1,平均为0.39 mm·d-1,而对照的土壤蒸发强度为0.58 mm·d-1.在马铃薯生长的现蕾期和开花期,水面蒸发量最大,日平均水面蒸发量分别为8.3和9.0 mm,与土壤蒸发不同步.马铃薯成熟期,各处理棵间土壤蒸发量都达到最大值.覆膜垄蒸发量最大,集雨效果显著,所以应采取抑制土壤蒸发措施,以便进一步提高水分利用效率.  相似文献   

12.
 裸沙表面的蒸发虽然是一个物理问题,但对于沙地植被演替的初始阶段非常重要。目前存在的地表蒸发的机理性模型大多是瞬时或者短时期的 ,而年尺度以上的蒸发量与降水和蒸发驱动下的土壤水分系统的状态变化及其对蒸发过程的反馈密切相关。一些估算毛乌素年蒸发量的实验结 果之间分歧很大且缺乏准确的机理性解释。该文利用生态系统模型中的土壤水分运动和蒸发模块计算了毛乌素裸沙丘从日到年际尺度的实际蒸 发量,发展了一个以单次降雨量和降雨频率为驱动因素的降雨-蒸发模型对年蒸发量进行简单的估算,并研究了年蒸发量对降雨格局的响应。结 果表明毛乌素裸沙丘的多年平均蒸发量为166 mm,占多年平均降雨量的56%。虽然研究区1959~1992年降雨总量无显著变化趋势,但是裸沙丘斑 块的实际蒸发量呈现较明显的增加趋势(1.30 mm&;#8226;a-1)。小降雨事件对蒸发量贡献的显著增加(0.69 mm&;#8226;a-1)是导致实际蒸发量增大的重 要原因。大强度降雨事件的频度和雨量对降雨总量的贡献要远高于对蒸发总量的贡献,小于12 mm的降雨事件在年际比较稳定,很大程度上保证 了年蒸发量100 mm左右的基数值。这些因素使得年蒸发量的变异程度小于年降雨量的变异程度。由于降雨格局的年际变化会对蒸发量产生直接 的影响,降雨-蒸发模型可以相对有效地预测年度蒸发量,而用年降雨量预测年蒸发量误差较大。  相似文献   

13.
 该文应用气象数据、土壤物理属性实测数据、土壤水分分布式动态模型和植被表面净辐射模型的模拟结果,利用多元线性回归分析方法,建立 了植被净第一性生产力模型,实现了鄂尔多斯高原东部砂质荒漠化地区考考赖沟流域尺度上30 m×30 m空间分辨率的植被生产力精确模拟,并 且用植被生产力的野外实测数据对模拟结果进行了验证表明: 实测值与模拟值在固定沙丘、半固定沙丘和样线2上都达到0.05显著性相关水平; 不同位置的实测植被生 产力数据多分布在1∶1直线附近,模拟值与实测值吻合较好;植被生产力实测值与模拟值的相对误差范围为3.22%~ 6.27%,偏斜度范围在-12.84%~4.43%。该文的研究方法可以为流域尺度上植被生产力的精确模拟提供借鉴和参考。  相似文献   

14.
玉米农田水热通量动态与能量闭合分析   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于锦州农田生态系统野外观测站玉米农田涡度相关系统近2年的水热通量观测数据,分析了玉米农田水热通量的日际、年际变化特征及其能量 平衡状况。结果表明: 1)玉米农田水热通量日变化与年变化均呈单峰型二次曲线,峰值出现在12∶00~13∶00左右,与净辐 射的日变化、年 变化同步,潜热通量最大可达到655 w&#8226;m-2(出现在2004年7月8日1 3∶00),显热通量最大值大约为369 w&#8226;m-2(出现在2004年5月31日13∶ 00)。2)玉米农田水热通量强度与局地的环境条件密切相关:显热通量与大气压的年变化呈负相关,潜热通量与气温年变化呈正相关。水热通 量受降水的影响较大,对降水的反应较敏感。其中,潜热通量(LE)不仅与降水的强度有关,而且随着降水的季节分布的不同而出现不同的响应 ,即使同样量级的降水在夜间与白天对LE的影响也是不同的。3)玉米农田通量观测呈现能量不闭合现象,主要原因可能是未包含0~5 cm土壤 热储量与冠层热储量,造成大约15.5%的能量损失。  相似文献   

15.
 该文利用涡度协方差法和生理生态学方法(不同分量的累积和)获得的通量观测数据,对老山落叶松(Larix gmelinii)林(45°20′N, 127°34 ′E)的碳收支进行了分析。通过对每0.5 h所测数据进行的分析表明,能量平衡达到75%,说明涡度协方差法适应于本站的研究。较阴天气情况 下,林分光照利用效率显著高于晴朗天气,可能归因于阴天较多的散射光。以单位土地面积计算发现,通过涡度协方差法计算的落叶松林生态 系统的总初级生产力在20~50 μmol•m-2•s-1之间,远高于冠层叶片的总光合速率9.8~23.4μmol•m-2•s-1 (平均值16.2μmol•m-2•s-1 ),而 当综合考虑冠层光合和林下植物光合作用时,两种方法测定结果吻合性较好,说明林下植物对落叶松林碳平衡有重要影响。在估计森林生态系 统呼吸方面,以有风夜晚净生态系统交换量(NEE)来代表生态系统呼吸总量(3~9μmol•m-2•s-1)低估了生态系统呼吸总量,粗略估计较生 理生态学方法(不同呼吸分量的累积和)低估了50%左右(14.2μmol•m-2•s-1)。结果发现两种方法在估计森林碳平衡方面存在一定的差异, 呼吸量的估计差异应是今后研究的重点。  相似文献   

16.
二维土壤蒸发过程的数值分析   总被引:4,自引:1,他引:3  
杨邦杰  陈镜明 《生态学报》1990,10(4):291-298
  相似文献   

17.
Competition for fresh water between agriculture and domestic and industrial uses is increasing worldwide. This is forcing subsistence and commercial agriculture to produce more with less water. Consequently, it is crucial to properly and efficiently manage water resources. This requires accurate determination of crop water loss into the atmosphere, which is greatly influenced by the exchange of energy and mass between the surface and the atmosphere. Measurement of these exchange processes can best be accomplished by micrometeorological methods. However, most micrometeorological methods are very expensive, difficult to set up, require extensive post-data collection corrections and/or involve a high degree of empiricism. This review discusses estimation of evapotranspiration using relatively inexpensive micrometeorological methods in temperature-variance (TV), surface renewal (SR) and mathematical models. The TV and SR methods use high frequency air temperature measurements above a surface to estimate sensible heat flux (H). The latent heat flux (λE), and hence evapotranspiration, is calculated as a residual of the shortened surface energy balance using measured or estimated net radiation and soil heat flux, assuming surface energy balance closure is met. For crops with incomplete cover, the disadvantage of these methods is that they do not allow separation of evapotranspiration into soil evaporation and plant transpiration. The mathematical models (single- and dual-source) involve a combination of radiation and resistance equations to determine evapotranspiration from inputs of automatic weather station observations. Single-source models (Penman-Monteith type equations) are used to determine evapotranspiration over homogeneous surfaces. The dual-source models, basically an extension of single-source models, determine soil evaporation and plant transpiration separately over heterogeneous or sparse vegetation. These mathematical models have also been modified to accommodate inputs of remotely-sensed radiometric surface temperatures that enable estimation of evapotranspiration on a regional and global scale.  相似文献   

18.
Interpreting diel hysteresis between soil respiration and temperature   总被引:1,自引:0,他引:1  
Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a function of soil temperature. Both biological and physical explanations have been suggested for hysteresis patterns, and there is currently no consensus on their causes or how such data should be analyzed to interpret the sensitivity of respiration to temperature. We used a one‐dimensional soil CO2 and heat transport model based on physical first principles to demonstrate a theoretical basis for lags between surface flux and soil temperatures. Using numerical simulations, we demonstrated that diel phase lags between surface flux and soil temperature can result from heat and CO2 transport processes alone. While factors other than temperature that vary on a diel basis, such as carbon substrate supply and atmospheric CO2 concentration, can additionally alter lag times and hysteresis patterns to varying degrees, physical transport processes alone are sufficient to create hysteresis. Therefore, the existence of hysteresis does not necessarily indicate soil respiration is influenced by photosynthetic carbon supply. We also demonstrated how lags can cause errors in Q10 values calculated from regressions of surface flux and soil temperature measured at a single depth. Furthermore, synchronizing surface flux and soil temperature to account for transport‐related lags generally does not improve Q10 estimation. In order to calculate the sensitivity of soil respiration to temperature, we suggest using approaches that account for the gradients in temperature and production existing within the soil. We conclude that consideration of heat and CO2 transport processes is a requirement to correctly interpret diel soil respiration patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号