首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
对实验室现有3种真菌产纤维素酶能力的分析及培养条件优化。比较了3种菌在刚果红培养基上的透明圈大小、并分析产纤维素酶酶活;通过单因素与响应面分析的方法优化毛酶产纤维素酶的培养条件。通过试验得出3种真菌均能产纤维素酶,毛霉能产较多的纤维素酶。毛霉产纤维素酶的最佳条件为:pH 5.0,转速220 r/min,发酵时间47 h,发酵温度35℃,纤维素酶活为6.99U/mL。毛霉、青霉、曲霉均产纤维素酶,毛霉能降解玉米芯纤维素。  相似文献   

2.
[目的]以微晶纤维素为底物,从宝天曼自然保护区采集的腐木和土壤中筛选产纤维素酶活高的真菌,并优化其培养基配方。[方法]通过微晶纤维素平板上产生的透明圈大小进行初筛,和滤纸酶活复筛,并通过响应面法优化其发酵培养基。[结果]筛选到一株酶活较高的菌株,经18S r DNA序列分析鉴定为哈茨木霉,命名为哈茨木霉D-8,通过响应面分析法优化后的培养基配方为木糖渣2. 86%,麸皮2%,微晶纤维素0. 48%,(NH4)2SO40. 32%,KH2PO41%,MgSO40. 04%。[结论]滤纸酶活从优化前的4. 32 IU/m L提高到5. 53 IU/m L,使其纤维素酶活提高了28%,其培养基的优化为哈茨木霉D-8的发酵生产奠定了应用基础。  相似文献   

3.
在筛选纤维素酶活菌株时,发现一株放线菌链霉菌属S10A09具有较高的纤维素酶活力。为了获得高酶活纤维素酶,将Plackett-Burman(PB)筛选和中心组合设计(CCD)以及响应面分析法相结合,考察影响链霉菌属S10A09发酵生产滤纸酶的发酵条件。Plackett-Burman结果表明,羧甲基纤维素钠(CMC-Na)和(NH_4)_2SO_4是影响S10A09发酵产纤维素酶活高低的主要因素。CCD实验优化后产酶最优发酵培养基(g/L)为CMC-Na 2.57、(NH_4)_2SO_411.31、KH_2PO_4 0.2、MgSO_41、FeSO_40.01。优化后,滤纸酶活(FPA)达到125.96 U/mL,接近优化前的3倍。  相似文献   

4.
【目的】提高植物乳杆菌CLP0279发酵生产低温超氧化物歧化酶(superoxide dismutase,SOD)的能力。【方法】在单因素实验基础上,采用Plackett-Burman (PB)设计、Box-Behnken (BB)设计和响应面分析法(RSM),对发酵培养基进行优化。【结果】植物乳杆菌CLP0279产低温SOD最佳发酵培养基(g/L):玉米粉25.000,磷酸二氢钾2.600,磷酸氢二钾1.830,硫酸铜0.011,硫酸锌0.014。在最佳培养基条件下产酶活力达到194.82 U/ml,是优化前的1.36倍。【结论】通过响应面分析,对植物乳杆菌CLP0279发酵生产低温SOD的培养基进行优化,明显提高了产酶能力。确定了磷酸氢二钾、硫酸铜和硫酸铵为发酵培养基中影响酶活的3个关键因子。研究结果为SOD的发酵放大提供了依据。  相似文献   

5.
以甘蔗渣和麸皮混合作为固态发酵产酶培养基,采用单因素优化实验对里氏木霉固态发酵产纤维素酶进行优化。结果表明,在50 m L体系培养基中,在底物绝干原料5.2 g、甘蔗渣与麸皮质量比7∶3、氮源((NH4)2SO4)7.5 g/L、产酶诱导物1.6 g/L、表面活性剂(聚乙二醇PEG6000)0.1 g、发酵起始p H 4.4、培养基中里氏木霉孢子接入量5×105个的条件下,温度30℃时发酵120 h,里氏木霉固态发酵产纤维素酶的酶活达76.39 IU/g,是起始优化前20.29 IU/g的3.76倍。  相似文献   

6.
绿色糖单孢菌产木聚糖酶规律及其耐碱耐热性的初步研究   总被引:13,自引:2,他引:11  
采用绿色糖单孢菌为实验材料,在不同诱导产酶培养基上经过192h的振荡培养,探索其产酶时程规律.结果表明,不同的诱导底物诱导产生的木聚糖酶活性差异不显著,但诱导产纤维素酶活性差异显著.其中松木粉加棉纱培养基诱导产纤维素酶活性为0.08IU/ml,与空白对照(5.40IU/ml)相比显著下降(P≤0.05).为了适应纸浆漂白实际应用中纤维素酶越少越好的要求,选择该培养基为最佳诱导产酶培养基.绿色糖单孢菌在上述培养基中培养156h后达到木聚糖酶产酶高峰。粗酶液酶活可达到9.03IU/ml.通过对该酶进行高温及碱性处理。实验结果表明绿色糖单孢菌分泌的木聚糖酶在pH7.0下反应表现最高活性,同时在90℃下保温3h后酶活为原来的63.55%,具有较好的耐碱耐热性.  相似文献   

7.
王垚  徐志鸿  虞泓  党喜军 《菌物学报》2019,38(3):393-402
纤维素酶是生物燃料产业的关键酶系。本文通过刚果红染色法从腌制一年的诺邓火腿上分离到一株具有纤维素酶活性的嗜盐真菌YFCC2018SY。以形态学结合分子系统学手段对其进行鉴定,用胞外酶活测定法探索其产酶规律,并通过响应面法优化其产酶条件。结果表明该菌株属于球孢枝孢菌,且能分泌滤纸酶、内切酶和β‐葡萄糖苷酶3种嗜盐纤维素酶。响应面分析得到最优发酵条件为:NaCl含量88.58g/L、装瓶量51.21mL、起始pH 7.72。通过优化,纤维素酶活力由113.3U/mL提高到302.8U/mL,提高了167%。上述结果可以为嗜盐纤维素酶开发利用提供参考。  相似文献   

8.
利用Plackett-Burman设计法(Plackett-Burman,PB),对影响根霉TP-02液态发酵产纤维素酶的8个因子进行了筛选,结果表明,影响该菌发酵产纤维素酶的主要因子为麸皮与稻草的比例、槐糖、Tween 80。利用最陡爬坡试验逼近最大响应区域,在此基础上,采用响应面法(ResponseSurface Methodology,RSM)对这3个因子的影响进行研究,得出纤维素酶产量的数学模型,通过对二次多项回归方程求解,得到3个因子的最优用量:麸皮稻草比例为:3.7:1,槐糖量为:0.62%,Tween 80为0.68 g/L,在优化后的条件下培养96 h,纤维素酶滤纸酶活可达到8.13 IU/mL比优化前提高了38.97%。  相似文献   

9.
粗糙脉孢菌作为木质纤维素降解真菌,不仅具有完整的木质纤维素降解酶系,而且还拥有全基因组基因敲除突变体库,是研究丝状真菌纤维素酶表达分泌和木质纤维素降解机制的优秀体系。近年来,国内外利用粗糙脉孢菌系统,在木质纤维素降解机制方面取得了显著进展,包括纤维素酶信号传导、调控以及生物质降解后糖的转运利用等。笔者就相关方面的进展进行综述,并对利用粗糙脉孢菌研究木质纤维素降解利用进行展望,总结和分析木质纤维素降解机制研究的国际前沿动态,有助于加深本领域研究人员对真菌体系纤维素降解机制的理解。  相似文献   

10.
粗糙脉孢菌作为木质纤维素降解真菌,不仅具有完整的木质纤维素降解酶系,而且还拥有全基因组基因敲除突变体库,是研究丝状真菌纤维素酶表达分泌和木质纤维素降解机制的优秀体系。近年来,国内外利用粗糙脉孢菌系统,在木质纤维素降解机制方面取得了显著进展,包括纤维素酶信号传导、调控以及生物质降解后糖的转运利用等。笔者就相关方面的进展进行综述,并对利用粗糙脉孢菌研究木质纤维素降解利用进行展望,总结和分析木质纤维素降解机制研究的国际前沿动态,有助于加深本领域研究人员对真菌体系纤维素降解机制的理解。  相似文献   

11.
Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16?% at pretreatment and 8?% at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2?g/100?g SB; 210?°C; 10?min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6?g/l or 84.7?% of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3?% and 89.6?%, respectively.  相似文献   

12.
This study was aimed to study the effect of commercial cellulases (Celluclast 1.5 LFG) on Kluyveromyces marxianus CECT 10875 growth and ethanol production in SSF processes. Preliminary tests carried out in glucose (50 g/L) fermentation medium showed that high enzyme amounts (2.5-3.5 FPU/mL) could cause a negative effect on K. marxianus growth rate and viable cells number. However, the maximum ethanol production was not affected and about 86% of the theoretical (22 g/L) was reached in all cases independently of the enzyme dosage. In SSF experiments, cell viability was always affected by enzyme loading. Nevertheless, slight differences observed on cell viability during glucose fermentation processes with the detected concentrations of the additives did not justify the negative effect observed in SSF experiments.  相似文献   

13.
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.  相似文献   

14.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

15.
Polysaccharides produced by microorganisms are utilized for a variety of purposes, including the use in cosmetics and as food additives. More recently, polysaccharides have been exploited by the medical and pharmaceutical industries, and those originated from many species of mushrooms have been especially useful in industrial applications; however, the production and synthesis of these compounds is costly and time consuming. In this study, we developed a method for low-cost production of exopolysaccharide (EPS) that effectively screens components and optimizes medium composition using statistical methods (Plackett-Burman and Box-Behnken design). As a result, we obtained the following optimized medium: sucrose 165.73 g/L, sodium nitrate 3.08 g/L, dipotassium phosphate 1.00 g/L, potassium chloride 0.50 g/L, magnesium sulfate 0.50 g/L, ferrous sulfate 0.01 g/L, and 0.71 g/L of Ashbya gossypii extract. The maximum production of about 29 g/L EPS was achieved in the optimized medium during 84 h batch fermentation.  相似文献   

16.
食用菌栽培废料,简称菌糠(spent mushroom substrate, SMS)是食用菌栽培和生产的残留物,其含有丰富的甲壳素、木质纤维和蛋白质等,可为苏云金芽孢杆菌(Bacillus thuringiensis, Bt)的生长提供所需的营养物质。本研究以优化后的前处理条件制备的菌糠浸提液(2%硫酸, 121℃, 1 h)作为主要碳源,通过单因素试验、Plackett-Burman设计、最陡爬坡和响应面分析等方法来优化最佳培养基组分,结果表明,54%SMS浸提液,31.9 g/L大豆饼粉、0.88 g/L CaCO3、0.4 g/L MnSO4、0.5 g/L K2HPO4和0.4 g/L吐温100为最佳培养基配方,且优化后培养基(1.8×108/mL)产生的孢子数是原始SMS培养基(0.065×108/mL)的27倍,这不仅为菌糠的二次利用提供一种新的有效方法,而且也可以大大降低生产Bt所需要的发酵成本,具有良好的应用前景。  相似文献   

17.
Abstract Highly specific antibodies against calmodulin from Neurospora crassa were produced in rabbits. These antibodies were immunopurified by chromatography on Neurospora calmodulin-Sepharose, and had a titer for purified calmodulin from Neurospora crassa and bovine testis of 80 ng/ml and 2.5 μg/ml respectively. By immunoblot, as little as 8 ng of pure Neurospora calmodulin could be detected, and the antibodies revealed calmodulin in crude homogenates from Neurospora crassa and Aspergillus nidulans while in homogenates from Allomyces arbuscula, Saccharomyces cerevisiae, Dictyostelium discoideum and bovine testis, calmodulin remained undetected.  相似文献   

18.
Conversion of plant biomass to soluble sugars is the primary bottleneck associated with production of economically viable cellulosic fuels and chemicals. To better understand the biochemical route that filamentous fungi use to degrade plant biomass, we have taken a quantitative proteomics approach to characterizing the secretome of Neurospora crassa during growth on microcrystalline cellulose. Thirteen proteins were quantified in the N. crassa secretome using a combination of Absolute Quantification (AQUA) and Absolute SILAC to verify protein concentrations. Four of these enzymes including 2 cellobiohydrolases (CBH-1 and GH6-2), an endoglucanase (GH5-1), and a β-glucosidase (GH3-4) were then chosen to reconstitute a defined cellulase mixture in vitro. These enzymes were assayed alone and in mixtures and the activity of the reconstituted set was then compared to the crude mixture of N. crassa secretome proteins. Results show that while these 4 proteins represent 63-65% of the total secretome by weight, they account for just 43% of the total activity on microcrystalline cellulose after 24 h of hydrolysis. This result and quantitative proteomic data on other less abundant proteins secreted by Neurospora suggest that proteins other than canonical fungal cellulases may play an important role in cellulose degradation by fungi.  相似文献   

19.
Production of cyclodextrin glycosyltransferase (CGTase) from Klebsiella pneumoniae pneumoniae AS-22 was optimized in shake flasks using a statistical experimental design approach. Effect of various components in the basal medium, like carbon, nitrogen, phosphorus, and mineral sources as well as initial pH and temperature, were tested on enzyme production. The optimum concentrations of the selected media components were determined using statistical experimental designs. Two level fractional factorial designs in five variables, namely, dextrin, peptone, yeast extract, ammonium dihydrogen orthophosphate, and magnesium sulphate concentrations were constructed. The optimum medium composition thus found consisted of 49.3 g/L dextrin, 20.6 g/L peptone, 18.3 g/L yeast extract, 6.7 g/L ammonium dihydrogen orthophosphate, and 0.5 g/L magnesium sulphate. The maximum CGTase activity obtained was 21.4 U/mL in 28 h of incubation. The cell growth and CGTase production profiles were studied with the optimized medium in shake flasks and in 1-L fermenters. It was observed that the enzyme production was growth associated both in shake flask and in fermenter, although it was slower in shake flask. The maximum CGTase activity obtained in the fermenter was 32.5 U/mL in 16 h. The optimized medium resulted in about 9-fold increase in the enzyme activity as compared to that obtained in the basal medium in shake flask as well as in fermenter.  相似文献   

20.
To improve the acetoin-producing ability of Bacillus subtilis SF4-3, isolated from “natto,” a Japanese traditional food, the fermentation medium was optimized in shake-flask fermentation by statistically designed methods. Based on results of the single-factor experiment, orthogonal experiment, and Plackett–Burman design, yeast extract, corn steep liquor, and urea were identified as showing significant influence on the acetoin production. Subsequently, the optimum combination of the three factors was investigated by the Box–Behnken design (BBD) of response surface methodology (RSM) in order to further enhance the acetoin production. The maximum acetoin yield of 45.4 g/L was predicted when the concentrations of yeast extract, corn steep liquor, and urea were 8.5 g/L, 14.6 g/L, and 3.8 g/L, respectively. The results were further confirmed in triplicate experiments using the optimized medium (glucose 160 g/L, yeast extract 8.5 g/L, corn steep liquor 14.6 g/L, urea 3.8 g/L, manganese sulfate 0.05 g/L, ferrous sulfate 0.05 g/L), and an acetoin yield of 46.2 g/L was obtained in the validation experiment, which was in agreement with the prediction. After the optimization of medium components, an increase of 36.28% in acetoin production was achieved in comparison to that at the initial medium levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号