首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8,117-11,680 km (10153+/-1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7,008-7,390 km. Flight duration ranged from 6.0 to 9.4 days (7.8+/-1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.  相似文献   

2.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

3.
Detours in bird migration   总被引:1,自引:0,他引:1  
Bird migration routes often follow detours where passages across ecological barriers are reduced in extent. This occurs in spite of the fact that long barrier crossings are within the birds' potential flight range capacity. Long-distance flights are associated with extra energy costs for transport of the heavy fuel loads required. This paper explores how important the fuel transport costs, estimated on the basis of flight mechanics, may be to explain detours for birds migrating by flapping flight. Maximum detours in relation to expanse of the barrier are predicted for cases where birds travel along the detour by numerous short flights and small fuel reserves, divide the detour into a limited number of flight steps, and where a reduced barrier passage is included in the detour. The principles for determining the optimum route, often involving a shortcut across part of the barrier, are derived. Furthermore, the effects of differences in fuel deposition rates and in transport costs for the profitability of detours are briefly considered. An evaluation of a number of observed and potential detours in relation to the general predictions of maximum detours, indicates that reduction of fuel transport costs may well be a factor of widespread importance for the evolution of detours in bird migration at wide ecological barriers.  相似文献   

4.
Eastern Curlews Numenius madagascariensis were satellite-tracked onto breeding grounds in north-eastern Russia from south-eastern Queensland over a distance of 12 000 km. They made initial non-stop, long distance flights across the Western Pacific Ocean towards the coastlines of China and Korea followed by shorter flights, over a period of more than a month. The return journey involved a major flight-leg as well, south from the Yellow Sea region. Many birds attempted to migrate but returned to the non-breeding grounds over periods of up to several months. Islands of the Western Pacific region, the southern coastline of New Guinea and north-eastern coastline of Australia are important, particularly for birds that stop migrating. Eastern Curlews that stopped migrating generally survived, which suggests that the species has adapted to deal with adverse conditions en route and/or a physical inability to complete the migration. Such a capacity is perhaps characteristic of a large wader with low annual mortality.  相似文献   

5.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

6.
Some of the factors that could influence changes in phenology of the song thrush (Turdus philomelos) during spring migration have been analyzed in relation to the timing of their return to the south-east Baltic region over the last 40 years. These include wind direction and velocity, temperature and precipitation in the wintering areas and along the migratory route. In March, a significant correlation was found between the timing of passage in the Baltic region and both the air temperatures in wintering area and winds over the migratory route. In April, when mass migration of thrushes occurs, the timing of passage was correlated with temperature, winds and, partly, precipitation over the route of migration. In this month, the frequency of tailwinds increased significantly along the route of migration from south-west France to the Baltic region over the last 40 years. The tailwind frequency was correlated with the beginning, middle and end of spring passage, accounting for 51% of the variance of median dates of the passage. The higher ambient temperatures over the migratory route explain nearly 20% of the variance in the timing of passage. Our results suggest that the advance in the timing of spring migration is primarily due to (1) the increased frequency of tailwinds favorable for migratory flights over the migratory route, and (2) the earlier emergence of the conditions enhancing migration due to higher spring temperatures in the winter quarters and on the migratory route.  相似文献   

7.
Thomas  Alerstam Staffan  Ulfstrand 《Ibis》1974,116(4):522-542
The migration of Wood Pigeons in southern Scandinavia was studied from 21 September to 10 October 1971 and from 16 September to 15 November 1972 using radar stations supplemented with observations from an aircraft and a network of ground observers. By far the largest quantities of Wood Pigeons migrated after cold front passages with northwesterly to northeasterly tailwinds. Most birds departed on a few days, apparently as a consequence of strong preference for tailwind situations. With northwesterly winds a proportionately high migratory activity was recorded in the Kattegatt area. With northeasterly winds activity was higher in the Baltic area. This allowed the Wood Pigeons to make maximal use of the tailwind component, and their ground speed usually exceeded 80 km/h. The calculated mean air speed was 60 km/h. Their dependence on tailwind was particularly strong when the birds were engaging in long sea-crossings, such as across the Kattegatt. Different coastlines affected the geographical pattern of migration in different ways. Frequently Wood Pigeon flocks flew almost parallel to the coast but some distance off shore, until they finally departed. The deflective force of coastlines was greatest when the birds' ground speed was low, that is, under headwind conditions or in calm weather. Mean track directions measured over two areas in northern Skane, called Inland W and Inland E, situated about 60 km apart, differed by 11, those over the western area being directed more to the south than those over the eastern. No significant correlation with wind directions was found in these areas. Combining data from the whole land area, however, track directions were found to vary from day to day in significant correlation to the wind direction. Mean track directions over the Baltic agreed with those over Skane, but both differed significantly from those over the Kattegatt. Both over the Baltic and over the Kattegatt directions were significantly correlated with wind directions, and showed greater variation than track directions over land. Daily track differences over the Baltic resulted both from differences taking place over the land, and from real wind deflection (drift). Both over the land and over the sea heading directions were correlated with wind directions, suggesting compensatory efforts on the part of the birds. On three days extensive fog covered much of the study area. Wood Pigeons continued to migrate, but certain aberrations in their behaviour were noted. Over land migration was relatively heavier in the west with northwesterly winds and in the east with northeasterly winds. The correlation demonstrated between wind direction and the mean track direction was based upon the fact that populations with different inherent primary directions made up different proportions of the migrating cohorts under different wind conditions (pseudo-drift). The incomplete compensation for wind deflection over the sea is ascribed to the lack of visual orientation cues. The more accurate orientation possible over land suggests one reason for the birds' reluctance to flights across the open sea. When mean track directions of Wood Pigeons in different parts of southern Scandinavia were related to the migratory goals of these birds, it was found that they have to change their primary direction in the course of their journey from breeding to wintering areas.  相似文献   

8.
Although it is often assumed that birds strongly prefer tailwindsfor their migratory flights, we predict that a strategy of nowind selectivity (traveling independently of winds) may be morefavorable than wind selectivity (traveling on tailwind occasionsbut stopping to rest under headwind occasions) for birds withlow energy costs of travel relative to rest and for birds thatcannot use stopover time for efficient fuel deposition. We testthis prediction by analyzing the daily traveling or stoppingas recorded by satellite tracking of five ospreys Pandion haliaetus,a species often using energy-saving thermal soaring, duringtheir migration between northern Europe and Africa. Besideswind, precipitation is another weather factor included in theanalyses because thermal soaring migrants are expected to stopand rest in rainy weather. In logistic regression analyses,taking into account the effects of latitude, behavior on previousday, season, date, and individual for discriminating betweentraveling and stopping days, we found a lack of influence ofwinds, suggesting that the ospreys travel or stop without regardto wind. This lack of wind selectivity under light and moderatewinds is in agreement with our prediction. We expect a low degreeof wind selectivity and thus regular flights under headwindsalso among other types of birds that cannot use stopping timefor efficient foraging and fuel deposition. We also found anunexpected lack of influence of precipitation, possibly becauseof relatively few instances with rainfall in combination withpoor geographic precision for estimates of this weather variable.  相似文献   

9.
All air‐breathing organisms must face the challenge of oxidative damage, and understanding how animals cope can lend insight into their ecology. Unlike other vertebrates, birds rely primarily on fats to fuel endurance exercise such as migration, and therefore face a greater potential for damage from the reactive by‐products of their own metabolism. We review the physiological ecology of migrating birds through the lens of oxidation–reduction chemistry, underscoring how oxidative balance in wild birds may affect their dietary choices and use of critical stopover habitats during migration. Recent studies reveal that migratory birds prepare for oxidative challenges either by up‐regulating endogenous antioxidants or by consuming them in their diet, and they repair oxidative damage after long flights, although much remains to be discovered about how birds maintain oxidative balance over the course of migration. We conclude by describing some of the most used and useful measures of antioxidant status and oxidative damage that field ornithologists can include in their tool kit of techniques to probe the oxidative balance of wild birds.  相似文献   

10.
Costs of migration, in terms of time, energy, and mortality risk, have a strong theoretical and empirical foundation in the study of birds. We expect these costs to be most severe for extreme long‐distance migratory landbirds, whose demanding annual routines (e.g. non‐stop flights > 8000 km and return journeys > 30 000 km) may approach their maximum physiological capabilities. To explore whether this is true, we review evidence in long‐jump migratory shorebirds (Scolopacidae), focusing most on the prototypical example, the Alaska‐breeding bar‐tailed godwit Limosa lapponica baueri. Contrary to expectations, these and similar birds demonstrate high adult survival, little evidence for elevated mortality during migration, no apparent minimisation of non‐stop flight distances, and low inter‐ and intra‐individual variation in migration performance. Two key aspects of extreme migrants may explain these findings: 1) a counter‐intuitively conservative annual‐cycle strategy, which minimises risks and enables dissipation of carry‐over effects before fitness consequences arise; and 2) selection pressure during early life, which quickly removes low‐performing individuals from the population. We hypothesise that these two factors, applicable to extreme strategies in a wide range of taxa, act to truncate the range of individual quality in a population, and decrease the prevalence and detectability of carry‐over effects. Testing these hypotheses is challenging, as it requires comparative studies of demography and individual quality spectra along a continuum of extremeness. However, it has important potential implications for interpreting individual variation, designing studies of cross‐seasonal interactions or costs of migration, and recognising early‐warning signs of population decline. For example, the most extreme shorebird migrations rely on abundant but difficult‐to‐access resources; the high minimum individual performance required for survival predicts that degradation of these resource hot‐spots will propel rapid population collapse, rather than incremental declines in condition or performance. Therefore, in extreme migrants, we may paradoxically view populations as operating close to the edge, even while individuals are not.  相似文献   

11.
The strategy of migrants crossing the Sahara desert has been the subject of debate, but recent evidence from radar studies has confirmed that most passerines use an intermittent migration strategy. The latter has also been suggested from previous studies in oases during autumn migration. It was found that migrants with relatively high fuel loads rest in the desert during daytime and continue migration during the following night, whereas lean migrants stopover in oases for several days to refuel. However, data from the Sahara are scarce for spring migration. We captured passerine migrants near B?r Amrane (22°47′N, 8°43′W) in the plain desert of Mauritania for 3 weeks during spring migration in 2004. We estimated flight ranges of 85 passerines stopping over in the desert to test whether they carried sufficient fuel loads to accomplish migration across the Sahara successfully. High fat loads of the majority of birds indicated that they were neither “fall-outs” nor too weak to accomplish migration successfully. The flight range estimates, based on mean flight speeds derived from radar measurements (59 km/h), revealed that 85% of all birds were able to reach the northern fringe of the desert with an intermittent migration strategy. Furthermore, birds stopping over in an oasis (Ouadane, 370 km to the southwest of B?r Amrane) did not carry consistently lower fuel loads compared to the migrants captured in the desert.  相似文献   

12.
Migrating birds perform extraordinary endurance flights, up to 200 h non-stop, at a very high metabolic rate and while fasting. Such an intense and prolonged physical activity is normally associated with an increased production of reactive oxygen and nitrogen species (RONS) and thus increased risk of oxidative stress. However, up to now it was unknown whether endurance flight evokes oxidative stress. We measured a marker of oxidative damage (protein carbonyls, PCs) and a marker of enzymatic antioxidant capacity (glutathione peroxidase, GPx) in the European robin (Erithacus rubecula), a nocturnal migrant, on its way to the non-breeding grounds. Both markers were significantly higher in European robins caught out of their nocturnal flight than in conspecifics caught during the day while resting. Independently of time of day, both markers showed higher concentrations in individuals with reduced flight muscles. Adults had higher GPx concentrations than first-year birds on their first migration. These results show for the first time that free-flying migrants experience oxidative stress during endurance flight and up-regulate one component of antioxidant capacity. We discuss that avoiding oxidative stress may be an overlooked factor shaping bird migration strategies, e.g. by disfavouring long non-stop flights and an extensive catabolism of the flight muscles.  相似文献   

13.
Most studies of lean mass dynamics in free-living passerine birds have focused on Old World species at geographical barriers where they are challenged to make the longest non-stop flight of their migration. We examined lean mass variation in New World passerines in an area where the distribution of stopover habitat does not require flights to exceed more than a few hours and most migrants stop flying well before fat stores near exhaustion. We used either quantitative magnetic resonance (QMR) analysis or a morphometric model to measure or estimate, respectively, the fat and lean body mass of migrants during stopovers in New York, USA. With these data, we examined (1) variance in total body mass explained by lean body mass, (2) hourly rates of fat and lean body mass change in single-capture birds, and (3) net changes in fat and lean mass in recaptured birds. Lean mass contributed to 50% of the variation in total body mass among white-throated sparrows Zonotrichia albicollis and hermit thrushes Catharus guttatus. Lean mass of refueling gray catbirds Dumetella carolinensis and white-throated sparrows, respectively, increased 1.123 and 0.320 g h−1. Lean mass of ovenbirds Seiurus aurocapillus accounted for an estimated 33–40% of hourly gains in total body mass. On average 35% of the total mass gained among recaptured birds was lean mass. Substantial changes in passerine lean mass are not limited to times when birds are forced to make long, non-stop flights across barriers. Protein usage during migration is common across broad taxonomic groups, migration systems, and migration strategies.  相似文献   

14.
The metaphor of marathon running is inadequate to fully capture the magnitude of long-distance migratory flight of birds. In some respects a journey to the moon seems more appropriate. Birds have no access to supplementary water or nutrition during a multi-day flight, and they must carefully budget their body fat and protein stores to provide both fuel and life support. Fatty acid transport is crucial to successful non-stop migratory flight in birds. Although fat is the most energy-dense metabolic fuel, the insolubility of its component fatty acids makes them difficult to transport to working muscles fast enough to support the highly aerobic exercise required to fly. Recent evidence indicates that migratory birds compensate for this by expressing large amounts of fatty acid transport proteins on the membranes of the muscles (FAT/CD36 and FABPpm) and in the cytosol (H-FABP). Through endogenous mechanisms and/or diet, migratory birds may alter the fatty acid composition of the fat stores and muscle membranes to improve endurance during flight. Fatty acid chain length, degree of unsaturation, and placement of double bonds can affect the rate of mobilization of fatty acids from adipose tissue, utilization of fatty acids by muscles, and whole-animal performance. However, there is great uncertainty about how important fatty acid composition is to the success of migration or whether particular types of fatty acids (e.g., omega-3 or omega-6) are most beneficial. Migratory bats provide an interesting example of evolutionary convergence with birds, which may provide evidence for the generality of the bird model to the evolution of migration by flight in vertebrates. Yet only recently have attempts been made to study bat migration physiology. Many aspects of their fuel metabolism are predicted to be more similar to those of migrant birds than to those of non-flying mammals. Bats may be distinct from most birds in their potential to conserve energy by using torpor between flights, and in the behavioral and physiological trade-offs they may make between migration and reproduction, which often overlap.  相似文献   

15.
Migrating birds make the longest non‐stop endurance flights in the animal kingdom. Satellite technology is now providing direct evidence on the lengths and durations of these flights and associated staging episodes for individual birds. Using this technology, we compared the migration performance of two subspecies of bar‐tailed godwit Limosa lapponica travelling between non‐breeding grounds in New Zealand (subspecies baueri) and northwest Australia (subspecies menzbieri) and breeding grounds in Alaska and eastern Russia, respectively. Individuals of both subspecies made long, usually non‐stop, flights from non‐breeding grounds to coastal staging grounds in the Yellow Sea region of East Asia (average 10 060 ± SD 290 km for baueri and 5860 ± 240 km for menzbieri). After an average stay of 41.2 ± 4.8 d, baueri flew over the North Pacific Ocean before heading northeast to the Alaskan breeding grounds (6770 ± 800 km). Menzbieri staged for 38.4 ± 2.5 d, and flew over land and sea northeast to high arctic Russia (4170 ± 370 km). The post‐breeding journey for baueri involved several weeks of staging in southwest Alaska followed by non‐stop flights across the Pacific Ocean to New Zealand (11 690 km in a complete track) or stopovers on islands in the southwestern Pacific en route to New Zealand and eastern Australia. By contrast, menzbieri returned to Australia via stopovers in the New Siberian Islands, Russia, and back at the Yellow Sea; birds travelled on average 4510 ± 360 km from Russia to the Yellow Sea, staged there for 40.8 ± 5.6 d, and then flew another 5680–7180 km to Australia (10 820 ± 300 km in total). Overall, the entire migration of the single baueri godwit with a fully completed return track totalled 29 280 km and involved 20 d of major migratory flight over a round‐trip journey of 174 d. The entire migrations of menzbieri averaged 21 940 ± 570 km, including 14 d of major migratory flights out of 154 d total. Godwits of both populations exhibit extreme flight performance, and baueri makes the longest (southbound) and second‐longest (northbound) non‐stop migratory flights documented for any bird. Both subspecies essentially make single stops when moving between non‐breeding and breeding sites in opposite hemispheres. This reinforces the critical importance of the intertidal habitats used by fuelling godwits in Australasia, the Yellow Sea, and Alaska.  相似文献   

16.
Refuelling by migratory birds before take-off on long flights is generally considered a two-phase process, with protein accumulation preceding rapid fat deposition. The first phase expresses the demands for a large digestive system for nutrient storage after shrinkage during previous flights, the second phase the demands for fat stores to fuel the subsequent flight. At the last staging site in northward migration, this process may include expression of selection pressures both en route to and after arrival at the breeding grounds, which remains unascertained. Here we investigated changes in body composition during refuelling of High Arctic breeding red knots (Calidris canutus piersmai) in the northern Yellow Sea, before their flight to the tundra. These red knots followed a three-phase fuel deposition pattern, with protein being stored in the first and last phases, and fat being deposited mainly in the second phase. Thus, they did not shrink nutritional organs before take-off, and even showed hypertrophy of the nutritional organs. These suggest the build up of strategic protein stores before departure to cope with a protein shortage upon arrival on the breeding grounds. Further comparative studies are warranted to examine the degree to which the deposition of stores by migrant birds generally reflects a balance between concurrent and upcoming environmental selection pressures.  相似文献   

17.
Recent prospects on trans-Saharan migration of songbirds   总被引:3,自引:0,他引:3  
FRANZ BAIRLEIN 《Ibis》1992,134(S1):41-46
Many palaearctic migrants in tropical Africa have to cross the inhospitable land of the Sahara desert. Moreau (1961, 1972) hypothesized that these migrants crossed the Sahara in a single non-stop flight. Recent field data, however, revealed that some migrants stop-over in suitable desert habitats. The majority of grounded migrants showed a high body-mass and fat-loading, indicating sufficient reserves for onward flights. Further evidence on resting periods, retrapping rates and experiments with caged migrants supports the hypothesis of an intermittent migratory strategy, with regular stopovers during the day and flight at night, for some desert-crossing passerines.  相似文献   

18.
Nocturnal migration of Reed Warblers Acrocephalus scirpaceus was studied by trapping with 'high nets' on the Courish Spit (Eastern Baltic) during spring 1998–2000. In spring, Reed Warblers left the stopover site between 45 and 240 min after sunset (median 84 min), although 85% of birds took off between 45 and 120 min after sunset. Birds did not arrive until the fifth hour after sunset; 67% of birds ended their nocturnal flights in the penultimate hour before sunrise, i.e. at dawn. At the moment of migratory departure, the average Reed Warbler body mass was 12.79 ± 0.66 g ( n  = 60). Average body mass of birds ending migratory flight was 11.69 ± 0.67 g ( n  = 18). The difference was highly significant. However, more than half of the birds completed migratory flights with a considerable fuel load, and some even had energy stores sufficient for a migratory flight on the next night. The spring migratory strategy of Reed Warblers over Central and Northern Europe probably includes a succession of short migratory flights (4–6 h) during several subsequent nights with 1-day stopovers.  相似文献   

19.
1.?An innate migration strategy guides birds through space and time. Environmental variation further modulates individual behaviour within a genetically determined frame. In particular, ecological barriers could influence departure direction and its timing. A shift in the migratory direction in response to an ecological barrier could reveal how birds adjust their individual trajectories to environmental cues and body condition. 2.?Northern wheatears of the Greenland/Iceland subspecies Oenanthe oenanthe leucorhoa arrive in Western Europe en route from their West African winter range. They then undergo an endogenously controlled shift in migratory direction from north to north-west to cross a large ecological barrier, the North Atlantic. We radiotracked these songbirds departing from Helgoland, a small island in the North Sea, over an unprecedented range of their journey. 3.?Here, we show that both birds' body condition and the wind conditions that they encountered influenced the departure direction significantly. Jointly high fuel loads and favourable wind conditions enabled migrants to cross large stretches of sea. Birds in good condition departed early in the night heading to the sea towards their breeding areas, while birds with low fuel loads and/or flying in poor weather conditions departed in directions leading towards nearby mainland areas during the entire night. These areas could be reached even after setting off late at night. 4.?Behavioural adjustment of migratory patterns is a critical adaptation for crossing ecological barriers. The observed variation in departure direction and time in relation to fuel load and wind revealed that these birds have an innate ability to respond by jointly incorporating internal information (body condition) and external information (wind support).  相似文献   

20.
Molt strategies have received relatively little attention in current ornithology, and knowledge concerning the evolution, variability and extent of molt is sparse in many bird species. This is especially true for East Asian Locustella species where assumptions on molt patterns are based on incomplete information. We provide evidence indicating a complex postbreeding molt strategy and variable molt extent among the Pallas's Grasshopper Warbler Locustella certhiola, based on data from six ringing sites situated along its flyway from the breeding grounds to the wintering areas. Detailed study revealed for the first time that in most individuals wing feather molt proceeds from the center both toward the body and the wing‐tip, a molt pattern known as divergent molt (which is rare among Palearctic passerines). In the Russian Far East, where both breeding birds and passage migrants occur, a third of the adult birds were molting in late summer. In Central Siberia, at the northwestern limit of its distribution, adult individuals commenced their primary molt partly divergently and partly with unknown sequence. During migration in Mongolia, only descendantly (i.e., from the body toward the wing‐tip) molting birds were observed, while further south in Korea, Hong Kong, and Thailand the proportion of potential eccentric and divergent feather renewal was not identifiable since the renewed feathers were already fully grown as expected. We found an increase in the mean number of molted primaries during the progress of the autumn migration. Moderate body mass levels and low‐fat and muscle scores were observed in molting adult birds, without any remarkable increase in the later season. According to optimality models, we suggest that an extremely short season of high food abundance in tall grass habitats and a largely overland route allow autumn migration with low fuel loads combined with molt migration in at least a part of the population. This study highlights the importance of further studying molt strategy as well as stopover behavior decisions and the trade‐offs among migratory birds that are now facing a panoply of anthropogenic threats along their flyways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号