首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3341篇
  免费   280篇
  国内免费   4篇
  2023年   26篇
  2022年   9篇
  2021年   98篇
  2020年   57篇
  2019年   81篇
  2018年   97篇
  2017年   78篇
  2016年   109篇
  2015年   195篇
  2014年   225篇
  2013年   230篇
  2012年   297篇
  2011年   239篇
  2010年   145篇
  2009年   151篇
  2008年   170篇
  2007年   146篇
  2006年   127篇
  2005年   120篇
  2004年   122篇
  2003年   108篇
  2002年   113篇
  2001年   40篇
  2000年   28篇
  1999年   34篇
  1998年   22篇
  1997年   14篇
  1996年   20篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   18篇
  1991年   18篇
  1990年   19篇
  1989年   10篇
  1988年   24篇
  1987年   14篇
  1984年   10篇
  1983年   15篇
  1982年   14篇
  1981年   14篇
  1980年   14篇
  1979年   10篇
  1978年   15篇
  1977年   9篇
  1976年   14篇
  1975年   9篇
  1974年   10篇
  1973年   9篇
  1924年   8篇
排序方式: 共有3625条查询结果,搜索用时 15 毫秒
1.
The pygmy right whale, Caperea marginata , is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low‐frequency sounds, but its hearing limit is relatively high. The presence of a well‐developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea‐balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level.  相似文献   
2.
3.
4.
5.
The biogeographic history of the Chihuahuan Desert is known to be complex, and there is evidence of the effects of physiographic and climatic events in species diversification and demographic population changes in many taxa. Here, using DNA sequence data, we studied the influence of the physiographic and climatic events that occurred in the Chihuahuan Desert during the Pliocene–Pleistocene transition on the speciation and evolutionary history of the sister lizard species Sceloporus cyanostictus and S. gadsdeni. First, based on mtDNA and nDNA sequences, we estimated the divergence times of the sister species. Then, based on mtDNA sequences, we investigated the demographic history of both species within a phylogeographic framework. The divergence time was inferred to be 1.48 Mya, date that corresponds to the existence of a large lake in the Mapimian subprovince, between the current geographic locations of S. cyanostictus and S. gadsdeni. This lake could have acted as a barrier, leading to the speciation of both species. For the demographic history of the two species, we identified two distinct patterns: the population expansion of S. gadsdeni within the Last Glacial Maximum and the potential population decline of S. cyanostictus. Our results can be used as a guide for the study of other aspects that could be critical to developing conservation actions that ensure the survival of not only S. gadsdeni and S. cyanostictus, but also other co‐occurring lizard species.  相似文献   
6.
Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.  相似文献   
7.
The genus Poecilia has been widely studied as a model for the evolution of sex chromosomes. In the course of molecular studies on population genetic structure and sexual selection in the Trinidad guppy, we examined our preparations for male-linked, repetitive DNA polymorphisms. We have not obtained any evidence of male-specific polymorphisms, in contrast to an earlier study. Our results have significant implications for theories on the evolution of sex chromosomes.Correspondence to: F. Breden  相似文献   
8.
9.
Widely known for pest species that include major modulators of temperate forests, the genus Choristoneura is part of the species‐rich tribe Archipini of leafroller moths (Tortricidae). Delimitation of the genus has remained unresolved because no phylogeny has included species endemic to Africa and studies have often omitted the type species of the genus. Further taxonomic confusion has been generated by the transfer of Archips occidentalis (Walsingham) to Choristoneura, creating a homonym with Choristoneura occidentalis Freeman, an important defoliator of North American forests. To define the limits of the genus, we reconstructed a phylogeny using DNA sequences for mitochondrial cytochrome oxidase subunit I and nuclear ribosomal 28S genes. Our ingroup included 23 Choristoneura species‐level taxa, complemented by a large sample of outgroups comprising 82 species of Archipini and other Tortricidae. We generated a time‐calibrated tree using fossil and secondary calibrations and we inferred biogeographic and diversification processes in Choristoneura. Our analysis recovered the genus as polyphyletic, with Archips occidentalis, Choristoneura simonyi and Choristoneura evanidana excluded from the main clade. Based on the recovered phylogenies and a redefinition, we restrict Choristoneura primarily to species with a northern hemisphere distribution. Our analysis supports A. occidentalis as the sister group of Cacoecimorpha pronubana, C. simonyi as the sister of ‘Xenotemnapallorana, and C. evanidana as the sister of Archips purpurana. A new combination is proposed: Archips evanidana comb.n. ; the availability of ‘Xenotemna’ as a valid name is discussed and A. occidentalis is considered as an orphaned name within the Archipini. We found support for a Holarctic origin of Choristoneura about 23 Ma, followed by early divergence in the Palearctic region. The main divergence occurred at 16 Ma, with one clade in the Nearctic and another in the Palearctic. Subsequent cladogenetic events were synchronous and related to herbivorous specialization, with each clade divided into coniferophagous and polyphagous lineages. Their specialization as conifer feeders temporally matched the expansion of boreal forest during the Miocene.  相似文献   
10.
Cuckoo wasps (Hymenoptera: Chrysididae) are a species‐rich family of obligate brood parasites (i.e. parasitoids and kleptoparasites) whose hosts range from sawflies, wasps and bees, to walking sticks and moths. Their brood parasitic lifestyle has led to the evolution of fascinating adaptations, including chemical mimicry of host odours by some species. Long‐term nomenclatural stability of the higher taxonomic units (e.g. genera, tribes, and subfamilies) in this family and a thorough understanding of the family's evolutionary history critically depend on a robust phylogeny of cuckoo wasps. Here we present the results from phylogenetically analysing ten nuclear‐encoded genes and one mitochondrial gene, all protein‐coding, in a total of 186 different species of cuckoo wasps representing most major cuckoo wasp lineages. The compiled data matrix comprised 4946 coding nucleotide sites and was phylogenetically analysed using classical maximum‐likelihood and Bayesian inference methods. The results of our phylogenetic analyses are mostly consistent with earlier ideas on the phylogenetic relationships of the cuckoo wasps' subfamilies and tribes, but cast doubts on the hitherto hypothesized phylogenetic position of the subfamily Amiseginae. However, the molecular data are not fully conclusive in this respect due to low branch support values at deep nodes. In contrast, our phylogenetic estimates clearly indicate that the current systematics of cuckoo wasps at the genus level is artificial. Several of the currently recognized genera are para‐ or polyphyletic (e.g. Cephaloparnops, Chrysis, Chrysura, Euchroeus, Hedychridium, Praestochrysis, Pseudochrysis, Spintharina, and Spinolia). At the same time, our data support the validity of the genus Colpopyga, previously synonymized with Hedychridium. We discuss possible solutions for how to resolve the current shortcomings in the systematics of cuckoo wasp genera and decided to grant Prospinolia the status of a valid genus (Prospinolia stat.n. ) and transferring Spinolia theresae [du Buysson 1900] from Spinolia to Prospinolia (Prospinolia theresae stat.restit. ). We discuss the implications of our phylogenetic inferences for understanding the evolution of host associations in this group. The results of our study not only shed new light on the evolutionary history of cuckoo wasps, but also set the basis for future phylogenomic investigations on this captivating group of wasps by guiding taxonomic sampling efforts and the design of probes for target DNA enrichment approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号