首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   4篇
  2021年   1篇
  2017年   2篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1968年   2篇
  1966年   4篇
  1964年   1篇
  1960年   3篇
  1928年   2篇
排序方式: 共有57条查询结果,搜索用时 218 毫秒
1.
2.
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix(ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine.  相似文献   
3.
Previously existing methods for determining the pH limits for the growth of microorganisms have involved (1), the setting up of individual cultures, each having a specific pH; (2), the pH gradient plate technique devised by Sacks (1956) in which a continuous pH gradient is established in a Petri dish by means of a buffer system; and (3), the pH gradient plate technique of Zak (unpublished), in which a continuous pH gradient is established by means of an electric current. The discontinuous pH gradient technique described here provides a convenient method of determining the maximum and minimum pH at which a microorganism can grow. The technique can be used aerobically or anaerobically, and has a precision of about ± 0.1 pH unit. Data are given for several yeasts and forSerratia marcescens. In all cases, the organisms tested continued to metabolize at pH values beyond those representing the limits for growth, sometimes by as much as 0.5 pH unit. The results suggest that pH limits are unsuitable criteria in microbial classification.  相似文献   
4.
Samples of great knots (Calidris tenuirostris) were collected in an earlier project, before and after a 5420‐km migration stage from Australia to China (believed to be flown non‐stop) to determine the mass of fat consumed, and also the mass of protein withdrawn from the flight muscles and other organs. The flight was simulated by a “time‐marching” computation, which calculated the fuel energy required, and allowed different hypotheses to be tried for the consumption of protein. The simulation predicted that the great knots would take about 4 days to cover the distance, in agreement with field estimates. Realistic predictions of the consumption of fat and protein were obtained by setting the conversion efficiency to 0.23 and the body drag coefficient to 0.10, withdrawing sufficient protein from the flight muscles to keep the specific work in the myofibrils constant throughout the flight, and taking enough additional protein from other tissues to bring the energy derived from oxidising protein to 5% of the total energy consumed. The same computation was applied to published data on the pre‐migration body composition of bar‐tailed godwits (Limosa lapponica), which are said to migrate over 10 000 km from Alaska to New Zealand. The computed range for a sample killed by collision with an obstruction, while actually departing from Alaska, was sufficient to reach the South Pole. A second sample, shot before departure from New Zealand, would have run out of fat before reaching Alaska, but could easily have reached northern Australia, where these godwits stage on their northbound migration. The higher range estimate for the Alaskan birds was not due to higher fat mass (only 5% difference) but to a higher fat fraction, which they had achieved by reducing the mass of other organs before departure. Some recent observations of high chemical power, observed in wind tunnel experiments, have been interpreted as being due to much lower conversion efficiency than the value of 0.23 assumed here, but this interpretation is flawed. Measurements of mechanical power from another wind tunnel project were also unexpectedly high, suggesting that unsteady flight by wind tunnel birds increases their power requirements, both mechanical and chemical, with no implications for efficiency. The calculated power is for “steady horizontal flight”, meaning that a valid test of predicted power requires birds to be trained to hold a constant position in the test section, while maintaining a steady wingbeat frequency and amplitude. This has not been achieved in recent experiments, and is hard to achieve when using physiological methods, because of the long periods of continuous flight needed. Measurements of mechanical rather than chemical power require shorter flight times, and offer better prospects for reliable power measurements.  相似文献   
5.
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8,117-11,680 km (10153+/-1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7,008-7,390 km. Flight duration ranged from 6.0 to 9.4 days (7.8+/-1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.  相似文献   
6.
Capture myopathy is a complication of capture and handling in many species of birds and mammals. Muscular necrosis leads to ataxia, paralysis, and pain, whereas metabolic disturbances can result in death. We conducted an opportunistic clinical trial on Bar-tailed Godwits (Limosa lapponica baueri) that developed capture myopathy after a cannon-net capture in New Zealand in October 2008. We assessed the beneficial effects of midazolam, a benzodiazepine with the effects of anxiolysis, muscle relaxation, and sedation, in the adjunctive treatment of capture myopathy. Physical and biochemical parameters were analyzed retrospectively for their potential as indicators for survival until release. Birds (n=16) were treated with subcutaneous fluid therapy, a nonsteroidal anti-inflammatory (meloxicam), gavage feeding, and sling therapy twice daily. The treatment group (n=8) was treated twice daily with intramuscular midazolam injections, 1.5 mg/kg. Surviving godwits were released over 1-9 days, with 6 of 8 treated birds (75%) surviving to release, compared with 3 of 8 controls (38%). Inability to counteract weight loss in captivity was the most significant problem for both groups. Lack of waterproofing and predation were contributing causes of death for at least two godwits after release. Birds treated with midazolam showed subjective benefits including improved tolerance of handling and sling therapy. Clinical parameters (change in body mass, packed cell volume [PCV], plasma creatine kinase [CK], aspartate aminotransferase [AST], total protein, and uric acid [UA] over time) were not statistically different between groups, although peak average values for CK, AST, and UA were lower in the treatment group. Decline in body mass (%), PCV, final plasma UA, and peak plasma CK were the most useful prognostic indicators. Midazolam shows potential as an ancillary treatment for capture myopathy in birds and is worthy of continued study and use.  相似文献   
7.

Background  

Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence.  相似文献   
8.
Pinocytosis was measured in monkey aortic smooth muscle cells (SMC), bovine aortic endothelial cells, and Swiss 3T3 cells in culture as cellular uptake of [U-(14)C]sucrose and horseradish peroxidase (HRP) from the tissue culture medium. Monkey arterial SMC and Swiss 3T3 cells were maintained in a quiescent state of growth at low cells density in medium containing 5 percent monkey plasma-derived serum (PDS). Replacement of PDS with 5 percent monkey whole blood serum (WBS) from the same donor, or addition to PDS of partially purified platelet-derived growth factor(s) (PF), resulted in a marked stimulation of pinocytosis as well as of cellular proliferation. In SMC, enhancement of the rate of pinocytosis occurred 4-6 h after exposure to WBS or PF, and the rate was up to twofold higher than the rate in medium containing PDS. In contrast, [(3)H]thymidine uptake by SMC did not increase until 12-16 h after exposure to PF. In endothelial cells the presence of PF or WBS did not enhance either the rate of pinocytosis or the rate of proliferation over that in PDS. Thus, endothelial cells did not become quiescent at subconfluent densities in PDS but maintained rates of proliferation and pinocytosis that were equivalent to those in WBS. By autoradiography, the fraction of labeled nuclei in SMC cultures 24 h after change of medium increased from 0.061 +/- 0.004 in quiescent cultures to 0.313 +/- 0.028 after exposure to WBS or PF. In contrast, labeling indices of endothelial cells were similar for cultures grown in PDS, WBS, or PF at any single time point after change of medium. These findings suggest that the rate of pinocytosis maybe be coupled in some fashion to growth regulation, which may be mediated in part by specific growth factors, such as that derived from the thrombocyte.  相似文献   
9.
The DeltaH(f) (0) unit weight of a complex substance such as a biological macromolecule is almost always obtained by means of combustion analysis. In theory, this can also be done by summing the DeltaH(f) (0) values for the monomers comprising the macromolecule plus the enthalpic energies involved in their polymerization. The enthalpy of formation of one unit-carbon formula weight of dried Escherichia coli K-12 cells was determined by summing the values of the enthalpies of formation of the quantities of monomers in the major classes of macromolecules substances comprising the cellular biomass and the enthalpic energies involved in their polymerizations. To this value was added the enthalpy of formation of the cellular ions in their aqueous standard states, per unit-carbon formula weight of cellular substance and the enthalpy change with respect to the ionization of the protein amino acid side chains. If it is assumed that the cellular fabric is insoluble and that the ions are soluble, the sum of the enthalpies of formation of all the cellular components should closely approximate the enthalpy of formation of one unit-carbon formula weight equivalent of living cells. Using this value, a calculation of the enthalpy change accompanying anabolism shows this latter to be effectively zero, indicating that the heat of growth (anabolism plus catabolism) is equal to that calculated for catabolism alone. This conclusion is in accord with those of several investigators who have used manometry or direct calorimetry.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号