首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The binding interaction between two dicationic styrylimidazo[1,2‐a]pyridinium dyes and human serum albumin (HSA) was investigated at physiological conditions using fluorescence, UV–vis absorption, and circular dichroism (CD) spectroscopies. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by these dyes was static. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that hydrogen bonding and van der Waals forces played a major role in the formation of the dye–HSA complex. Binding distances (r) between dyes and HSA were calculated according to Förster's non‐radiative energy transfer theory. Studies of conformational changes of HSA using CD measurements indicate that the α‐helical content of the protein decreased upon binding of the dyes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this Letter, the binding of 3'-azido-3'-deamino daunorubicin (ADNR) to human serum albumin (HSA) was investigated at different temperatures by fluorescence spectroscopy at pH 7.4. The binding constant was determined according to Stern-Volmer equation based on the fluorescence quenching of HSA in the presence of ADNR. The thermodynamic parameters, ΔH and ΔS, were calculated according to the dependence of enthalpy change on the temperature to be -21.01 kJ mol(-1) and 24.71 J K(-l) mol(-l), respectively. The results revealed that ADNR had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The hydrophobic force played a major role in the interaction of ADNR with HSA, which was in good agreement with the results of molecular modeling study. The effect of various metal ions on the binding constants of ADNR with HSA was also investigated. All the experimental results and theoretical data indicated that ADNR could bind to HSA and be effectively transported and eliminated in body, which might be a useful guideline for further drug design.  相似文献   

3.
The interaction of new dinuclear copper(ii) complex 1; [Cu(2)(glygly)(2)(ppz)(H(2)O)(4)]·2H(2)O, derived from dipeptide (glycyl glycine) and piperazine as a metallopeptide drug with human serum albumin (HSA) was examined by means of fluorescence spectroscopy which revealed that complex 1 has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The alterations of HSA secondary structure in the presence of complex 1 were confirmed by UV-visible, FT-IR, CD and 3D fluorescence spectroscopy. The binding constants (K), and binding site number (n), corresponding thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated. The molecular docking technique was utilized to ascertain the mechanism and mode of action towards the molecular target HSA indicating that complex 1 was located at the entrance of site I by electrostatic and hydrophobic forces, consistent with the corresponding experimental results. Complex 1 shows efficient photo-induced HSA cleavage activity, indicating the involvement of hydroxyl radicals as the reactive species. Furthermore, the cytotoxicity of 1 was examined on a panel of human tumor cell lines of different histological origins showing significant GI(50) values specifically towards MIAPACA2, A498 and A549 tumor cell lines. These results complement previous biological studies of new specific target metallopeptides, providing additional information about possibilities of their transport and disposition in blood plasma.  相似文献   

4.
The interactions of artemisinins including artemisinin, dihydroartemisinin, artemether and artesunate with human serum albumin (HSA) were studied by fluorescence spectroscopy, UV–Vis absorption spectroscopy, synchronous fluorescence, three-dimensional fluorescence, circular dichroism (CD) and molecular modeling. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that the artemisinins had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, the association constants K a and the corresponding thermodynamic parameters ΔH, ΔG and ΔS at various temperatures were also calculated. Based on the mechanism of Förster’s non-radiative energy transfer theory, the distance between the acceptors and HSA were found. In addition, alteration of the secondary structure of HSA in the presence of the artemisinins was tested by CD spectroscopy. Molecular modeling revealed that the artemisinins were bounded in the large hydrophobic cavity of the site I of HSA.  相似文献   

5.
The binding of fisetin with human serum albumin (HSA) has been studied at different pH using UV-Vis, FTIR, CD and fluorescence spectroscopic techniques. The binding constants were found to increase with the rise in pH of the media. The negative ΔH° (kJ mol-1) and positive ΔS° (J mol-1 K-1) indicate that fisetin binds to HSA via electrostatic interactions with an initial hydrophobic association that result in a positive ΔS° . In presence of potassium chloride (KCl) the binding constants were found to be decrease. The α-helical content of HSA increased after binding with fisetin as analyzed from both CD and FTIR methods. The site marker displacement studies using fluorescence anisotropy suggest that fisetin binds to the hydrophobic pocket (Site 1, subdomain IIA) of HSA which is in good accordance with the molecular docking study. The change in accessible surface area (ASA) of residues of HSA was calculated to get a better insight into the binding.  相似文献   

6.
The interaction between cyproheptadine hydrochloride (CYP) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and molecular modeling at a physiological pH (7.40). Fluorescence of HSA was quenched remarkably by CYP and the quenching mechanism was considered as static quenching since it formed a complex. The association constants Ka and number of binding sites n were calculated at different temperatures. According to Förster's theory of non‐radiation energy transfer, the distance r between donor (human serum albumin) and acceptor (cyproheptadine hydrochloride) was obtained. The effect of common ions on the binding constant was also investigated. The effect of CYP on the conformation of HSA was analyzed using FT‐IR, synchronous fluorescence spectroscopy and 3D fluorescence spectra. The thermodynamic parameters ΔH and ΔS were calculated to be ?14.37 kJ mol?1 and 38.03 J mol?1 K?1, respectively, which suggested that hydrophobic forces played a major role in stabilizing the HSA‐CYP complex. In addition, examination of molecular modeling indicated that CYP could bind to site I of HSA and that hydrophobic interaction was the major acting force, which was in agreement with binding mode studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

8.
Di‐(2‐ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP − HSA interaction were also investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Seven new quinoline-based bioorganic compounds were prepared by solvent-free synthesis and characterized using spectral techniques. The binding of these compounds with human serum albumin (HSA) was investigated by multi-spectroscopic methods. The quenching of Trp fluorescence upon addition of these compounds to HSA confirmed their significant binding. The quenching analysis at three different temperatures revealed that the complex formation is static and the reaction is entropy driven, spontaneous, and exothermic. Hydrogen bonds and van der Waals forces mainly contributed in the interactions as confirmed by the negative ΔH and ΔS values as well as molecular docking. The results from the circular dichroism (CD) spectroscopy indicated the minimal conformational changes of the protein upon binding with these quinoline compounds. The specific binding site and mode of interactions with HSA were also modeled using induced fit molecular docking procedure and their binding site was found to be in the interface of domains II and III, which is similar to the binding of the drug iodipamide with serum albumin.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB–HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92–6.89?×?103?M?1 at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB–HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J?mol?1 K?1) and negative ΔH (?6.57?kJ?mol?1) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB–HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow’s site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca2+, Zn2+, Cu2+, Ba2+, Mg2+, and Mn2+ in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.  相似文献   

12.
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6‐diaminoacridine derivatives obtained from proflavine, which are 3,6‐diphenoxycarbonyl aminoacridine and 3,6‐diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet‐visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA‐derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern‐Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6‐diethoxycarbonyl aminoacridine, 3,6‐diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non‐radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Tian J  Liu J  He W  Hu Z  Yao X  Chen X 《Biomacromolecules》2004,5(5):1956-1961
The binding of scutellarin with human serum albumin (HSA) was investigated at four temperatures, 296, 303, 310, and 318 K, by fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), and molecular modeling study at pH 7.40. The binding parameters were determined by Scatchard's procedure, which are approximately consistent with the results of Stern-Volmer equation. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: DeltaH degrees is a small negative value (-8.55 kJ/mol), whereas DeltaS degrees is a positive value (65.15 J/mol K). Quenching of the fluorescence HSA in the presence of scutellarin was observed. Data obtained by fluorescence spectroscopy and CD experiment, FT-IR experiment, and molecular modeling method suggested that scutellarin can strongly bind to the HSA and the primary binding site of scutellarin is located in site I of HSA. It is considered that scutellarin binds to site I (subdomain II) mainly by a hydrophobic interaction and there are hydrogen bond interactions between the scutellarin and the residues Arg222 and Arg257.  相似文献   

14.
Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three‐dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 104 M?1 at 298 K. It can be seen from far‐UV CD spectra that the α‐helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA.  相似文献   

15.
Cui F  Cui Y  Luo H  Yao X  Fan J  Lu Y 《Biopolymers》2006,83(2):170-181
The preparation and characteristics of N-n-undecyl-N'-(sodium-p-aminobenzenesulfonate) thiourea (UPT), a new water-soluble reagent with a saturated fatty hydrocarbon group, were described. The interactions of UPT with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using fluorescence spectroscopy in combination with ultraviolet (UV) absorption spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and the molecular modeling method. UPT exhibited a strong ability to quench the intrinsic fluorescence of both BSA and HSA through a static quenching procedure. The binding constants of UPT and BSA or HSA were determined at different temperatures based on the relevant fluorescence data. The binding sites were obtained and the acting force was suggested to be mainly hydrophobic interaction, which was consistent with the result of the molecular modeling study, and there were also a number of hydrogen bonds between UPT and HSA. The results of determination of the proteins in bovine serum or human serum by this method were very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry. A practical method was proposed for the determination of UPT in bovine serum or human serum samples with satisfactory results.  相似文献   

16.
The interaction between cromolyn sodium (CS) and human serum albumin (HSA) was investigated using tryptophan fluorescence quenching. In the discussion of the mechanism, it was proved that the fluorescence quenching of HSA by CS is a result of the formation of a CS–HSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measure of the binding affinity between CS and HSA. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated. The distance r between donor (Trp214) and acceptor (CS) was obtained according to fluorescence resonance energy transfer (FRET). Furthermore, synchronous fluorescence spectroscopy data and UV–vis absorbance spectra have suggested that the association between CS and HSA changed the molecular conformation of HSA and the electrostatic interactions play a major role in CS–HSA association.  相似文献   

17.
Ellagic acid (EA), a natural polyphenol evidence several pharmacological benefits. The binding profile of EA with human serum albumin (HSA) has been explored and investigated by Isothermal titration calorimetry (ITC), circular dichroism (CD) spectroscopy, time-correlated single-photon counting (TCSPC), absorbance spectroscopy, steady-state fluorescence spectroscopy, and modelling studies. The ITC data analysis revealed the binding Constant (Ka), ΔH, ΔS and ΔG values to be 15.5×104M?1, ?116.2±18.1 Kcal mol?1, ?366 cal mol?1K?1 and ?7.13 Kcal mol?1 respectively with a unique binding site at HSA. EA effectively quenched the intrinsic fluorescence of HSA by static quenching, whereas TCSPC data also revealed association of dynamic quenching also. Thermodynamic analysis confirmed that hydrophobic and mainly hydrogen bonding interaction played important role in stabilizing the HSA-EA complex. It further dictates the binding reaction to be enthalpy driven. The secondary structure of HSA was altered upon binding with EA. CD spectroscopic data indicated the fraction of alpha helicity to be decreased from 52% to 40% upon binding to EA. This study will provide an insight on evaluation of this bioactive interaction during transport and releasing efficiency at the target site in human physiological system since HSA is the most important carrier protein in blood serum.  相似文献   

18.
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular‐docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three‐dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular‐docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8‐anilino‐1‐naphthalenesulfonic acid, was changed with norgestrel addition.  相似文献   

19.
The human serum albumin (HSA) interaction of a mixed‐ligand copper compound (1) with an imidazole and taurine Schiff base derived from salicylaldehyde and taurine was investigated using fluorescence spectroscopy, UV–vis spectroscopy, time‐resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy and a molecular docking technique. The results of fluorescence and time‐resolved fluorescence spectroscopy indicated that 1 can effectively quench the HSA fluorescence by a static mechanism. Binding constants (K) and the number of binding sites (n ≈ 1) were calculated using modified Stern–Volmer equations. The thermodynamic parameters were calculated. UV–vis, CD and FT‐IR spectroscopy measurements confirm the alterations in the HSA secondary structure induced by 1. The site marker competitive experiment confirms that 1 is located in subdomain IB of HSA. The combination of molecular docking results and fluorescence experimental results reveal that hydrophobic interaction and hydrogen bonds are the predominant intermolecular forces stabilizing the 1–HSA complex. The 1–HSA complex increases approximately three times its cytotoxicity in cancer cells but has no effect on normal cells in vitro. Compared with unbound 1, the 1–HSA complex promotes HepG2 cells apoptosis and also has a stronger capacity for cell cycle arrest at the S phase of HepG2 cells.  相似文献   

20.
Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ~pH 7.2, B form ~pH 9.0 and F form ~pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants K(a) for N and B isomers were found to be 6.09×10(5 )M(-1) and 4.47×10(5) M(-1), respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1:1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号