首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent trends in ecological restoration complicate the job of wilderness managers. An emphasis on volunteer participation in restoration designed to foster human/nature relationships often conflicts with the mandate to leave land untrammeled. We frame this conflict as the “participation paradox.” Higgs’ (2003) Nature by Design contains a response to the paradox that includes a strong defense of participatory focal restoration and a related critique of wilderness. After identifying the limitations of Higgs’ arguments, we address the paradox by showing how an appeal to the moral virtues of humility, self‐restraint, and altruism supports a restrictive conception of wilderness and a healing metaphor for wilderness restoration. The virtue‐informed healing metaphor provides an argument for restricting volunteer participation and long‐term restoration projects in wilderness areas. It also identifies the general conditions in which damaged wilderness should be allowed to “heal itself.” The upshot of our approach to the paradox is that some standards for good restoration should be contextualized to land use designations. In particular, the emphasis on participatory restoration is appropriate in humanized landscapes but not in wilderness.  相似文献   

2.
In a recent editorial, I discussed how the culture of science, heterogeneity of nature, and real‐world human complexities can limit the practical relevance of formal scientific research and argued that less formal approaches might often be more efficient and effective. Giardina et al. criticized this editorial and argued that formal science has and increasingly will play a central role in ecological restoration in particular and human progress in general. Here, I respond to these arguments and expand upon the ideas presented in my previous editorial. I further illustrate how despite superficial appearances the utilitarian value of formal science may often be largely indirect. I also argue that the complexities of ecological and human systems combined with the subjective values and political beliefs underlying restoration make transforming this discipline into a unified “hard science” virtually impossible. Because values and politics also underlie most environmental conflicts, and scientific inquiry is inherently unsuitable for resolving these kinds of disputes, the future success of restoration may depend more on political support than scientific progress. Dogmatic, nonfalsifiable faith in the universal superiority of “rigorous” scientific knowledge and methodologies can foster arrogance and intolerance and blind us to the ephemeral nature of scientific “truths” and the double‐edged sword of scientific “progress.” My hope is that Society for Ecological Restoration International (SERI) will remain a big inclusive tent that embraces a healthy diversity of foci and approaches that emulate the extraordinary diversity we find within the natural ecosystems and human cultures we strive to preserve, restore, and reconnect.  相似文献   

3.
Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an “ivory tower” mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using “square grids” placed on small patches of land to examine treatment effects on species representation; (2) Cabin’s critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small‐scale and truly haphazard successes without well‐designed studies that can provide peer‐reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise ( Sagan 1996 ), the contribution of restoration science to restoration practice can only grow as the discipline matures.  相似文献   

4.
Much of the practice of restoration is conducted by businesses—contractors, consultants, designers, engineers. Restoration businesses interact with a variety of stakeholders to complete projects on time and on budget, and to achieve ecological and business objectives. Our research explores the business perspective in restoration; it is based on data collected from businesses (contractors, consultants, design engineers), agencies, and nongovernmental organizations involved in a Superfund cleanup project in Montana, one of the largest river restoration efforts ever. Our findings highlight several areas restoration businesses must navigate. First, restoration businesses must juggle potentially competing goals, maintaining ecological integrity while achieving profitability objectives. Second, these businesses must manage the risk that arises from variability in the natural environment as well as individuals' risk tolerances. Third, they must navigate the disconnect between “science” and “practice,” including how to best monitor restoration projects. Fourth, they must make decisions about new techniques and innovations. Fifth, on‐the‐ground implementation must acknowledge that personnels' motives and expertise might conflict with original plans. We discuss these findings in relation to relevant scholarly research, offering implications for theory and practice. For example, the business of ecological restoration requires learning over time to be profitable while achieving the desired ecological and social outcomes; restoration businesses leverage monitoring in pursuit of adaptive management and engage “frontline personnel” as important voices in the restoration process. Understanding the business of restoration adds an important perspective in the complex dynamics of social‐ecological systems.  相似文献   

5.
One of the means of creating a more robust methodology for ecological restoration involves reducing the gap between ecological theory and restoration practices. A common strategy to do so is using meta‐analysis to understand key drivers of restoration outcomes. “Active” and “passive” is a dichotomy often used to separate restoration strategies in such meta‐analyses. We investigate previously raised concerns about selection bias and subjective categorization of strategies. We promote a paired experimental design in future empirical research and propose the use of three categories of restoration strategy in lieu of “passive” and “active” to alleviate inconsistency in definitions and categorization.  相似文献   

6.
“再野化”:山水林田湖草生态保护修复的新思路   总被引:2,自引:0,他引:2  
杨锐  曹越 《生态学报》2019,39(23):8763-8770
作为一种新兴的生态保护修复方法,“再野化”(rewilding)是指特定区域中荒野程度的提升过程,尤其强调提升生态系统韧性和维持生物多样性。再野化实践的核心要素包括保护核心荒野地、增加荒野地的连通性、保护和重引入关键种(包括大型食肉动物)、适度允许自然干扰的发生、降低人类干扰和管理程度、拆除部分人工基础设施等。评述了北美洲和欧洲的再野化实践。通过比较研究,提出基于再野化的我国山水林田湖草生态保护修复的新思路,包括战略层面的5项转变和行动层面的5项建议。5项战略转变,包括从还原论思维转向整体思维、从工程性修复转向保护优先和自然恢复为主、从项目尺度转向景观尺度、从短期试点转向长期实践、从政府主导转向多方参与;5项行动建议,包括开展荒野和再野化基础调查、保护仅存的高价值荒野地、探索“城-乡-野”系统性再野化途径、以荒野保护区和再野化区域为核心建立大尺度景观保护网络、开展基于再野化的生态体验和自然教育。  相似文献   

7.
The terms “ecological restoration” and “restoration ecology” are frequently interchanged. Restoration ecology is the suite of scientific practices that constitute an emergent subdiscipline of ecology. Ecological restoration is the ensemble of practices that constitute the entire field of restoration, including restoration ecology as well as the participating human and natural sciences, politics, technologies, economic factors, and cultural dimensions. This paper is motivated by the concern that the broader practice of restoration may become narrowed over the next decade as a result of zealous attention to scientific and technological considerations, and that restoration ecology will trump ecological restoration. Scientific and technological acumen is necessary for successful restoration, but insufficient. Maintaining a broader approach to restoration requires respect for other kinds of knowledge than science, and especially the recognition of a moral center that is beyond the scope of science to address fully. An example of integrated restoration is presented: the ecological and cultural restoration of Discovery Island (near Victoria, British Columbia, Canada) by the Lekwungen people (Songhees First Nation).  相似文献   

8.
Every year, the four federal agencies that manage designated wilderness in the United States receive proposals to implement small‐ and large‐scale ecological restorations within the National Wilderness Preservation System. The combination of climate change with other landscape stressors is driving ecological restoration to be one of the single most important, challenging, and potentially litigious wilderness stewardship issues. In addition, different stakeholders may have strongly divergent views about what the right decision should be, and decisions need to go beyond routine technical and scientific analyses to incorporate a broader range of legal and ethical considerations. We present a framework based on a comprehensive, structured set of scientific, legal, and ethical questions to guide the evaluation of proposals for ecological restoration and other types of ecological intervention in wilderness. This framework of questions is a voluntary tool designed to increase communication and transparency among scientists, managers, and interested publics regarding the trade‐offs and uncertainties of ecological restoration, and promote informed public deliberation in managing the public resource of wilderness.  相似文献   

9.
Present State and Future Perspectives of Restoration Ecology—Introduction   总被引:1,自引:1,他引:0  
Although the aim of and the need for ecological restoration, and restoration ecology as its scientific base, are obvious, the field is still struggling with defining its basics. This situation, reflected by the debate about alternative terms to replace “restoration,” the ambiguous self‐image as a movement, art, application, or science, and the lack of a unifying conceptual framework, results in an uncertainty about the future development of the field. In a 10‐year project, an interdisciplinary Research Training Group in Jena followed the regeneration of one degraded terrestrial and aquatic ecosystem, respectively, and suggested a conceptual model for regeneration and restoration that was derived from the shared features of the two systems. As part of the scientific discussion of this new approach, an international workshop “Present State and Future Perspectives of Restoration Ecology” was organized in Jena in November 2004. The following collection of 12 opinion papers and 1 concluding chapter reflect the discussions at the workshop and contributes to the “self‐finding” process of restoration ecology.  相似文献   

10.
Researchers reexamining the relationship between restoration science and practice report a continuing scientist‐practitioner gap. As a land manager with scientific training, I offer my perspective of the chasm and describe a restoration practice infused with as much science as the realities of limited budget and time allow. The coastal sage scrub (CSS) restoration project at Starr Ranch, a 1,585 ha Audubon preserve in southern California, combines non‐chemical invasive species control, restoration, and applied research. Our practices evolve from modified scientific approaches and the scientific literature. Results from experiments with non‐optimum replication (on effects of seed rates, soil tamping, and timing of planting) nonetheless had value for management decisions. A critical practice came from academic research that encouraged cost‐effective passive restoration. Our passive restoration monitoring data showed 28–100% total native cover after 3–5 years. Another published study found that restoration success in semiarid regions is dependent on rainfall, a finding vital for understanding active restoration monitoring results that showed a range of 0–88% total native cover at the end of the first season. Work progresses through a combination of applied research, a watchful eye on the scientific literature, and “ecological intuition” informed by the scientific literature and our own findings. I suggest that it is less critical for academic scientists to address the basic questions on technique that are helpful to land managers but rather advocate practitioner training in methods to test alternative strategies and long‐term monitoring.  相似文献   

11.
A low‐intervention approach to restoration that also allows restoration outcomes to be framed as trajectories of ecosystem change can be described as “open‐ended” restoration. It is an approach which recognizes that long‐term ecosystem behavior involves continual change at small and large spatial and temporal scales. There are a number of situations in which it is appropriate to adopt an open‐ended approach to restoration including: in remote and large areas, where ecological limiting factors will be changed by future climates, where antecedent conditions cannot be replicated, where there are novel starting points for restoration, where restoration relies strongly on processes outside the restoration area, in inherently dynamic systems, where costs are high and where the public demands “wildness.” Where this approach is adopted managers need to explain the project and deal with public expectations and public risk. Monitoring biotic and abiotic components of the project are very important as an open‐ended approach does not equate to “abandon and ignore it.”  相似文献   

12.
Evans and Davis claim the SER Standards use a “pure naturalness” model for restoration baselines and exclude most cultural ecosystems from the ecological restoration paradigm. The SER Standards do neither. The SER Standards consider both “natural” ecosystems (that are unequivocally not cultural) and “similar” cultural ecosystems as suitable reference models. Furthermore, Evans and Davis propose assessing whether a cultural ecosystem exhibits “good, bad, or neutral impacts from humans on ecosystems” as the basis for reference models. We argue that such an approach would overlook the indispensability of native ecosystem benchmarks to measure human impacts and provide a springboard for social‐ecological restoration.  相似文献   

13.
The recognition that we are in the distinct new epoch of the Anthropocene suggests the necessity for ecological restoration to play a substantial role in repairing the Earth's damaged ecosystems. Moreover, the precious yet limited resources devoted to restoration need to be used wisely. To do so, we call for the ecological restoration community to embrace the concept of evidence‐based restoration. Evidence‐based restoration involves the use of rigorous, repeatable, and transparent methods (i.e. systematic reviews) to identify and amass relevant knowledge sources, critically evaluate the science, and synthesize the credible science to yield robust policy and/or management advice needed to restore the Earth's ecosystems. There are now several examples of restoration‐relevant systematic reviews that have identified instances where restoration is entirely ineffective. Systematic reviews also serve as a tool to identify the knowledge gaps and the type of science needed (e.g. repeatable, appropriate replication, use of controls) to improve the evidence base. The restoration community, including both scientists and practitioners, needs to make evidence‐based restoration a reality so that we can move from best intentions and acting with so‐called “purpose” to acting for meaningful impact. Doing so has the potential to serve as a rallying point for reframing the Anthropocene as a so‐called “good” epoch.  相似文献   

14.
Woodland restoration is underway globally to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long‐term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilized soil and earthworm sampling across a chronosequence of sites transitioning from “agricultural land” to “secondary woodland” (50–110 years) and “ancient woodland” (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad‐leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50–60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad‐leaved woodlands (50–110 years) were comparable to those found in long‐term ancient woodlands (>400 years). Our findings show that broad‐leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50–110 years, and provide intel on how restoration activities may be best targeted to maximize soil quality and functions.  相似文献   

15.
Biodiversity and Conservation - The concept of the “wilderness ethic” is at an impasse. Despite calls for action to conserve wilderness, any notion of wilderness thinking still resides...  相似文献   

16.
自然湿地生态恢复研究综述   总被引:133,自引:7,他引:126  
张永泽  王 Huan 《生态学报》2001,21(2):309-314
湿地由于具有丰富的资源、独特的牛态结构和功能而享有“自然之肾”之称。为了更好地保护和开发利用湿地,世界各国都在积极采取措施阴止湿地的退化或消失,湿地的生态恢复与重建问题已成为生态学和环境科学的研究热点,在全面综述国内外湿地生态恢复研究进展的基础上,对湿地乍态恢复研究的重点和热点进行了探讨和分析,指出我国为做好湿地生态恢复工作尚需进一步加强湿地生态恢复的方法学、基础理论、应用技术和示范推广等方面的研究。  相似文献   

17.
It is often assumed that species recolonization follows from the restoration of key habitat structure. Thus, forest restoration focuses on the recovery of trees into deforested landscapes, so that a multitude of associated organisms can achieve “colonization credit” and recolonize from remnant source populations into restored habitat. This opportunity for recolonization exists because species vulnerable to habitat loss may experience an “extinction debt,” during which their remnant populations decline only slowly to equilibrium with a deforested landscape. These persistent but declining populations become propagule sources for recolonization. To test limits to “colonization credit,” this study focused on old‐growth dependent lichen epiphytes, using a simulation to identify a hypothetical threshold at which: (1) the number of remnant populations, and (2) their population sizes, are too low to achieve recolonization and population recovery, despite efforts placed into forest restoration. The results show that for a landscape scenario relevant to the industrialized temperate zone, with less than 5% of old‐growth forest remaining, and ambitions for restoration to circa 10–15% forest cover, there is a failure to achieve population recovery over long timescales (i.e. within 600 years), making translocation a necessary option. This delay represents a “colonization deficit” that may be a common feature in ecological restoration more generally.  相似文献   

18.
Conserving and restoring biodiversity are compelling challenges in the face of deforestation and fragmentation of tropical forests. Establishing restoration plantings that act as stepping‐stone corridors for animals and develop into forest islets is one way we can reconnect forest fragments split by active agricultural landscapes. However, this strategy's success is contingent on dispersal agents attracted from the forests that vary greatly in their dispersal services, diet, and mobility. Dispersal agents capable of traversing the agricultural matrix that also provide high‐quality and high‐quantity seed dispersal are often a small subset of the present fauna. They also tend to be large‐bodied birds with broad diets (e.g. toucans). This subset of dispersal agents (here termed “effective restoration agents”) plays a key role in driving succession in restoration plantings. Their absence or low numbers can compromise the strategy of using plantings to enhance connectivity in landscapes fragmented by crops, orchards, or extensive pastures. In this event, additional intervention may be required to attract other dispersal agents that would otherwise not disperse seeds at or play a significant role in restoration plantings.  相似文献   

19.
Based on concrete examples gathered from the Mediterranean region, this article shows why restoration ecology around the Mediterranean Basin must go beyond ecological science to embrace a contrasting local vision which integrates social and political realities. By taking into account the growing gap between the northern and southern/eastern shores of the Mediterranean, we propose the adoption of a double agenda for restoration around the Mediterranean to overcome the fact that restoration objectives are often jeopardized by political decisions initially aimed to promote conservation and lack of available technical means (even when appropriate scientific and political means are secured), and to enhance local actions with lasting impacts on the ecosystems. Our discussion illustrates how current ecological problems have become extremely complex and how the success of restoration projects depends on effective social interactions. Here, the simple juxtaposition of disciplines is no longer sufficient. We suggest going beyond existing ecological and socioeconomic frontiers to fill three main gaps. To fill the “design gap” it is important from the outset to promote a full debate for correct definition of the project's objectives and success indicators. Second, to fill the “implementation gap” ecological restoration science should be linked to information technology and cognition science to develop tools adapted for ecological debate. Third, to fill the “evaluation gap” aesthetic, social, cultural, and economic indicators should be defined during the debate process.  相似文献   

20.
In response to our recent article (Higgs et al. 2018) in these pages, George Gann and his coauthors defended the Society for Ecological Restoration (SER) International Standards, clarified several points, and introduced some new perspectives. We offer this counter‐response to address some of these perspectives. More than anything, our aims are in sharpening the field of restoration in a time of rapid scaling‐up of interest and effort, and support further constructive dialogue going forward. Our perspective remains that there is an important distinction needed between “Standards” and “Principles” that is largely unheeded by Gann et al. (2018). We encourage SER to consider in future iterations of its senior policy document to lean on principles first, and then to issue advice on standards that meet the needs of diverse conditions and social, economic, and political realities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号