首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
雌激素受体信号通路新进展   总被引:3,自引:0,他引:3  
雌激素通过直接与两类核内雌激素受体ERα和ERβ结合,活化靶基因的转录,这是经典的雌激素受体信号转导途径。近来发现,雌激素受体还能够通过依赖或不依赖雌激素的方式与胞内一些信号通路对话,使自身被磷酸化而活化;雌激素受体还能与其它转录因子相互作用,调节自身或者其它转录因子的活化功能,参与ER阳性细胞的增殖调节。此外,雌激素能通过细胞膜上的雌激素受体进行信号转导,引起靶细胞的快速反应及活化靶基因转录,参与骨和心血管保护。  相似文献   

2.
3.
Estrogen and Neurodegeneration   总被引:3,自引:0,他引:3  
Although estrogen is best known for its effects on the maturation and differentiation of the primary and secondary sex organs, increasing evidence suggests that its influence extends beyond this system, and its activity in the CNS may initiate, or influence our susceptibility to neurodegenerative decline. Estrogen has been proposed to act as a general neuroprotectant at several levels and it is probable that deprivation of estrogen as a result of menopause exposes the aging, or diseased brain to several insults. In addition, estrogen deprivation is likely to initiate, or enhance degenerative changes caused by oxidative stress, and to reduce the brain's ability to maintain synaptic connectivity and cholinergic integrity leading to the cognitive decline seen in aged, and disease-afflicted individuals.  相似文献   

4.
雌激素信号通路概述   总被引:1,自引:0,他引:1  
过去几十年,人们一直认为雌激素信号通路是雌激素与细胞核中的雌激素受体(ER)结合,作用于雌激素受体反应元件调节基因表达,从而改变细胞功能。雌激素不但与核ER结合,也能与膜ER结合激活PI3K信号通路。G蛋白偶联受体(GPR30)也能与雌激素结合,激活PI3K信号通路。雌激素通过结合不同雌激素受体改变细胞生理功能。我们对雌激素信号通路做简要综述。  相似文献   

5.
Estrogen receptor phosphorylation   总被引:20,自引:0,他引:20  
Lannigan DA 《Steroids》2003,68(1):1-9
Estrogen receptor alpha (ERalpha) is phosphorylated on multiple amino acid residues. For example, in response to estradiol binding, human ERalpha is predominately phosphorylated on Ser-118 and to a lesser extent on Ser-104 and Ser-106. In response to activation of the mitogen-activated protein kinase pathway, phosphorylation occurs on Ser-118 and Ser-167. These serine residues are all located within the activation function 1 region of the N-terminal domain of ERalpha. In contrast, activation of protein kinase A increases the phosphorylation of Ser-236, which is located in the DNA-binding domain. The in vivo phosphorylation status of Tyr-537, located in the ligand-binding domain, remains controversial. In this review, I present evidence that these phosphorylations occur, and identify the kinases thought to be responsible. Additionally, the functional importance of ERalpha phosphorylation is discussed.  相似文献   

6.
7.

Background

Estrogens are associated with the loss of skeletal muscle strength in women with age. Ovarian hormone removal by ovariectomy in mice leads to a loss of muscle strength, which is reversed with 17β-estradiol replacement. Aging is also associated with an increase in antioxidant stress, and estrogens can improve antioxidant status via their interaction with estrogen receptors (ER) to regulate antioxidant gene expression. The purpose of this study was to determine if ER and antioxidant gene expression in skeletal muscle are responsive to changes in circulating estradiol, and if ERs regulate antioxidant gene expression in this tissue.

Methodology/Principal Findings

Adult C57BL/6 mice underwent ovariectomies or sham surgeries to remove circulating estrogens. These mice were implanted with placebo or 17β-estradiol pellets acutely or chronically. A separate experiment examined mice that received weekly injections of Faslodex to chronically block ERs. Skeletal muscles were analyzed for expression of ER genes and proteins and antioxidant genes. ERα was the most abundant, followed by Gper and ERβ in both soleus and EDL muscles. The loss of estrogens through ovariectomy induced ERα gene and protein expression in the soleus, EDL, and TA muscles at both the acute and chronic time points. Gpx3 mRNA was also induced both acutely and chronically in all 3 muscles in mice receiving 17β-estradiol. When ERs were blocked using Faslodex, Gpx3 mRNA was downregulated in the soleus muscle, but not the EDL and TA muscles.

Conclusions/Significance

These data suggest that Gpx3 and ERα gene expression are sensitive to circulating estrogens in skeletal muscle. ERs may regulate Gpx3 gene expression in the soleus muscle, but skeletal muscle regulation of Gpx3 via ERs is dependent upon muscle type. Further work is needed to determine the indirect effects of estrogen and ERα on Gpx3 expression in skeletal muscle, and their importance in the aging process.  相似文献   

8.
9.
Estrogen receptor immunocytochemistry.   总被引:2,自引:0,他引:2  
Estrogen receptor activity was preserved in fixed, paraffin-embedded tissue and demonstrated by binding of estrogen which, in turn, was detected immunocytochemically. Estrogen was added to rat endocervial epithelium to protect specifically receptors during fixation. The protective estrogen was apparently lost during embedding and had to be resupplied before staining. Estradiol-mediated immunocytochemical staining was inhibited by diethylstilbestrol and nafoxidine hydrochloride.  相似文献   

10.
11.
In studies of men's capacity for estrogen inactivation in health and disease, it was observed that patients with prostatic cancer had enhanced ability to inactivate estrogenic hormones. This ability might well lead to excessive androgen stimulation, thereby providing favorable hormonal environment for the development of prostatic cancer. Extension or regression of the malignant process did not affect this peculiar pattern of estrogen metabolism. It is possible, therefore, that the pattern may not be related to the cancer process itself but to some inherent tendency in the individual. Upon speculation as to whether or not this tendency is found in the liver, which is known to be the principal site of estrogen inactivation, studies of patients with liver damage were carried out and the results indicated that the liver possesses a tremendous reserve for inactivation of the estrogens in men. Studies on estrogen concentration in the bile indicated that estrogens are not eliminated rapidly from the human body through the biliary tract. However, this does not hold true for experimental animals. Observations on endogenous estrogen excretion in men did not support the concept that benign prostatic hypertrophy is due to an elevated estrogen-androgen ratio.  相似文献   

12.
13.
14.
雌激素(Estrogen)是人体内常见的类固醇激素,它不仅仅在生殖系统中发挥重要作用,在神经保护方面也扮演重要角色。目前研究发现雌激素发挥作用的途径主要有两种:受体依赖途径及非受体依赖途径。可以协同表达神经营养因子,调节突触及轴突长度,上调抗细胞凋亡蛋白,舒张血管增加血流量,抗氧化应激,抗兴奋性氨基酸的毒性作用等发挥保护作用。近年来的研究发现雌激素还与线粒体的关系密切,线粒体功能在神经退行性病变的发生发展中有着举足轻重的作用,雌激素可以抑制线粒体内活性氧的生成,稳定线粒体膜电位及细胞内Ca2+稳态,减轻细胞的损伤。本文主要从以上几方面对雌激素神经保护作用进行讨论。  相似文献   

15.
PURPOSE OF REVIEW: The controversy surrounding hormone replacement therapy has induced fear in patients and left many researchers with the impression that estrogen produces negative effects on cardiovascular function. The aim of this review is to summarize recent findings illustrating that estrogen also has positive effects even if estrogen replacement therapy is not a cure-all. RECENT FINDINGS: Studies have unveiled new aspects of estrogen action in the cardiovascular system; however, clinical trials have not demonstrated a protective effect of the most widely used modalities of hormone replacement therapy against cardiovascular disease. New information has emerged showing that estrogen has both beneficial and detrimental effects. Further mechanistic studies and use of well defined forms of estrogens and selective estrogen receptor modulators will continue to provide novel mechanistic information that will likely lead to the development of new avenues for therapeutic interventions. SUMMARY: Estrogens, like other steroid hormones, are potent actors in the cardiovascular system. Since half the population have high levels of estrogen most of their lives it is plain that estrogen has a variety of beneficial physiologic functions. Clinical studies, however, have demonstrated that a specific formulation of a combination of potent estrogens and metabolites is not a magic bullet, but induces both positive and negative impacts on different organ systems. More research into the mechanistic actions of estrogens in specific pathways in individual cell types is necessary to determine appropriate therapeutic interventions to replace the loss of positive effects of estrogens while minimizing the negative effects in postmenopausal women.  相似文献   

16.
17.
雌激素与阿尔采末病   总被引:9,自引:0,他引:9  
阿尔采末病(AD)是一种慢性的大脑神经退行性变性疾病,主要表现为进行性远近记忆力障碍、语言、情感、认知、行为等方面改变。近年研究发现,AD的发病与雌激素缺乏有密切关系。雌激素可通过多种途径、环节延缓AD发生、发展。如促进可溶性β-淀粉样蛋白(Aβ)生成,维持中枢神经元组织结构,影响中枢神经递质含量、酶活性、载脂蛋白E(apoE)生成及抗氧化等。目前,雌激素作为预防和治疗AD的药物日益受到重视,可望  相似文献   

18.
雌激素替代疗法(estrogen replacement therapy,ERT)是治疗绝经后综合征的首选治疗方案,但是长期应用导致子宫内膜增生、乳腺癌等。选择性雌激素受体调节剂主要通过ER亚型、共调节子、靶启动子、雌激素受体相关受体等机制实现其组织选择性,在发挥骨骼、心血管保护作用的同时,减少了对乳腺及生殖系统的副作用。目前,选择性雌激素受体调节剂的种类、作用的组织特异性及其临床应用在医学界引起广泛关注,具有广阔的发展前景。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号