首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence‐specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area—how sequence‐specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation. Mol. Reprod. Dev. 77: 662–669, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
The bacteriophage lambda cIII gene product has a regulatory function in the lysis-lysogeny decision following infection. The availability of a set of cIII expression mutants allowed us to establish the structure-function relationship of the cIII mRNA. We demonstrate, using defined in vitro systems, that the cIII mRNA is present in two conformations at equilibrium. Mutations that have been shown to lead to cIII overexpression were found to freeze the RNA in one conformation (structure B), and permit efficient binding to the 30 S ribosomal subunit. Mutations that have been shown to prevent cIII translation cause the mRNA to assume the alternative conformation (structure A). In this structure, the translation initiation region is occluded, thereby preventing 30 S ribosomal subunit binding. By varying the temperature or Mg2+ concentration it was possible to alter the relative proportion of the alternative structures in wild-type mRNA. We suggest that the regulation of the equilibrium between the two mRNA conformations provides a mechanism for the control of cIII gene expression.  相似文献   

4.
Influence of mRNA determinants on translation initiation in Escherichia coli.   总被引:11,自引:0,他引:11  
We have studied the classic initiation elements of mRNA sequence and structure to better understand their influence on translation initiation rates in Escherichia coli. Changes introduced in the initiation codon, the Shine and Dalgarno sequence, the spacing between those two elements, and in the secondary structures within initiation domains each change the rate of 30 S ternary complex formation. We measured these differences using extension inhibition analysis, a technique we have called "toeprinting". The rate of 30 S initiation complex formation in the absence of initiation factors agrees well with in vivo translation rates in some instances, although in others a regulatory role of initiation factors in 30 S complex formation is likely. Nucleotides 5' to the Shine and Dalgarno domain facilitate ternary complex formation.  相似文献   

5.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

6.
7.
8.
9.
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5′ untranslated region (5′UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA–protein and RNA–RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5′ and 3′UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.  相似文献   

10.
11.
12.
13.
当前,基因组范围内分析细胞内蛋白质翻译事件的研究仍然落后于转录事件的研究.无论原核生物还是真核生物,细胞内的核糖体均是蛋白质翻译的工厂,因此对于核糖体的研究至关重要.早在1963年,Warner等[1]发现了细胞内的多聚核糖体结构.Wolin和Walter[2]用RNase消化正在翻译中  相似文献   

14.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.  相似文献   

15.
16.
17.
Dicistroviridae intergenic region (IGR) internal ribosome entry site(s) (IRES) RNAs drive a cap-independent pathway of translation initiation, recruiting both small and large ribosomal subunits to viral RNA without the use of any canonical translation initiation factors. This ability is conferred by the folded three-dimensional structure of the IRES RNA, which has been solved by X-ray crystallography. Here, we report the chemical probing of Plautia stali intestine virus IGR IRES in the unbound form, in the 40S-subunit-bound form, and in the 80S-ribosome-bound form. The results, when combined with an analysis of crystal structures, suggest that parts of the IRES RNA change structure as the preinitiation complex forms. Using mutagenesis coupled with native gel electrophoresis, preinitiation complex assembly assays, and translation initiation assays, we show that these potentially structurally dynamic elements of the IRES are involved in different steps in the pathway of ribosome recruitment and translation initiation. Like tRNAs, it appears that the IGR IRES undergoes local structural changes that are coordinated with structural changes in the ribosome, and these are critical for the IRES mechanism of action.  相似文献   

18.
19.
The inhibition of the ubiquitin-dependent proteasome system (UPS) via specific drugs is one type of approach used to combat cancer. Although it has been suggested that UPS inhibition prevents the rapid decay of AU-rich element (ARE)-containing messages, very little is known about the cellular mechanisms leading to this effect. Here we establish a link between the inhibition of UPS activity, the formation of cytoplasmic stress granules (SGs), and mRNA metabolism. The assembly of the SGs requires the phosphorylation of the translation initiation factor eIF2alpha by a mechanism involving the stress kinase GCN2. On prolonged UPS inhibition and despite the maintenance of eIF2alpha phosphorylation, SGs disassemble and translation recovers in an Hsp72 protein-dependent manner. The formation of these SGs coincides with the disassembly of processing bodies (PBs), known as mRNA decay entities. As soon as the SGs assemble, they recruit ARE-containing messages such as p21(cip1) mRNA, which are stabilized under these conditions. Hence, our findings suggest that SGs could be considered as one of the players that mediate the early response of the cell to proteasome inhibitors by interfering temporarily with mRNA decay pathways.  相似文献   

20.
Signals of translation initiation of operons of Haemophilus influenzae ribosomal proteins were predicted. This process is regulated by the formation of secondary RNA structures to which one of the proteins encoded in a particular operon binds. In some cases, these structures imitate the region of protein binding to rRNA. Predictions are made by comparing with homologous operons of Escherichia coli and analogous regions of rRNA and by estimating the energy of secondary structure formation. It is shown that this regulatory mechanism occurs: in operons L11, S10, S15, spc, and alpha of H.influenzae and, probably, in operon S15 of Helicobacter pylori, Bacillus subtilis, and Mycoplasma genitalium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号