首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T‐RFLP) analysis, are well‐suited techniques for the examination of microbial community structures. The use of phylum‐ and class‐specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain‐specific primers. To date, several phylum‐ and class‐specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non‐target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T‐RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above‐mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.  相似文献   

2.
Two pairs of oligonucleotide primers were designed for the polymerase chain reaction (PCR)‐based detection and differential identification of naturally occurring interspecific hybrid types (subspecies) of Phytophthora alni, all of which cause collar rot of alder trees. Primer pairs were derived from randomly amplified polymorphic DNA (RAPD) fragments that were unique to various subspecies of this alder pathogen. The primer pair set, SAP1/SAP2 (SAP), was derived from a 0.93‐kb RAPD fragment amplified from P. alni ssp. alni. The primer pair set, SWAP1/SWAP2 (SWAP), was derived from a 1.13‐kb fragment amplified from P. alni ssp. uniformis. Patterns of SAP and SWAP amplification enabled distinction among the three subspecies. No PCR products were amplified from isolates of 31 other Phytophthora spp. examined, including P. cambivora and P. fragariae, the suspected progenitors of P. alni. The SAP and SWAP primer sets were able to detect a minimum of 10 pg of DNA from pure cultures or DNA extracted from as few as 10 zoospores. Pathogen DNA could also be amplified directly from bark lesions of artificially inoculated and naturally infected common alders and from lesions developed on common cherry‐laurel leaves used in baiting the pathogen from infested soil. Direct detection of pathogen DNA from alder tissue using SAP and SWAP primer sets should prove useful in developing measures for effective quarantine and management of P. alni.  相似文献   

3.
The choice of primer and TaqMan probes to quantify ammonia-oxidizing bacteria (AOB) in environmental samples is of crucial importance. The re-evaluation of primer pairs based on current genomic sequences used for quantification of the amoA gene revealed (1) significant misrepresentations of the AOB population in environmental samples, (2) and a lack of perfect match primer pairs for Nitrosomonas europaea and Nitrosomonas eutropha. We designed two new amoA cluster 7-specific primer pairs and TaqMan probes to quantify N. europaea (nerF/nerR/nerTaq) and N. eutropha (netF/netR/netTaq). Specificity and quantification biases of the newly designed primer sets were compared with the most popular primer pair (amoA1f/amoA2r) using DNA from various AOB cultures as individual templates as well as DNA mixtures and environmental samples. Based on the qPCR results, we found that the newly designed primer pairs and the most popular one performed similarly for individual templates but differed for the DNA mixtures and environmental samples. Using the popular primer pair introduced a high underestimation of AOB in environmental samples, especially for N. eutropha. Thus, there is a strong need for more specific primers and probes to understand the occurrence and competition between N. europaea and N. eutropha in different environments.  相似文献   

4.
Reliable reference genes are critical for relative quantification using quantitative real‐time PCR (qPCR). Ten tomato genes (Solanum lycopersicum) and their respective primer sets, which have been used over the last 6 years as references in expression studies, were evaluated for their performance using leaf tissue samples grown under semi‐controlled conditions and infected with grey mould (Botrytis cinerea) or late blight (Phytophthora infestans). The target genes coding for U6 snRNA‐associated Sm‐like protein LSm7, calcineurin B‐like protein and V‐type proton ATPase were the most stable expressed of all the genes tested in three experimental repetitions. Evaluation of candidate reference genes with geNorm and NormFinder softwares yielded the lowest mean values for their respective primer sets LSM7, SlCBL1 and SlATPase, suggesting stable expression. However, SlATPase primer set revealed a comparably high intra‐group variation and was thus not considered further. In follow‐up experiments with P. infestans, the geNorm and NormFinder values of primer sets LSM7 and SlCBL1 were even lower, indicating the stability of their expression also under these conditions. Primer efficiency differed by ‐18 to +5 percentage points from values presented in the literature. Our findings show that a reference primer set which delivers the best results in one system may be outperformed by another under different experimental conditions, thus recommending a reassessment of both expression stability and qPCR efficiency whenever the biological or technical experimental set‐up is changed. On the basis of our results, we recommend the use of LSM7 and SlCBL1 as reference primer sets for gene expression studies on plant tissue derived from open or semi‐controlled conditions.  相似文献   

5.
6.
In this study, Streptococcus gordonii‐specific quantitative real‐time polymerase chain reaction (qPCR) primers, RTSgo‐F2/RTSgo‐R2, were developed based on the nucleotide sequences of RNA polymerase β‐subunit gene (rpoB). The specificity of the RTSgo‐F2/RTSgo‐R2 primers was assessed by conventional PCR on 99 strains comprising 63 oral bacterial species, including the type strain and eight clinical isolates of S. gordonii. PCR products were amplified from the genomic DNAs of only S. gordonii strains. The qPCR primers were able to detect as little as 40 fg of S. gordonii genomic DNA at a cycle threshold value of 33. These findings suggest that these qPCR primers detect S. gordonii with high specificity and sensitivity.  相似文献   

7.
The ichthyotoxic genus Pseudochattonella forms recurrent extensive blooms in coastal waters in Japan, New Zealand and Northern Europe. It comprises of two morphologically similar species, P. verruculosa and P. farcimen, which complicates visual species identification and enumeration of live and fixed material. Primers designed previously could not quantitatively distinguish species in mixed assemblages. To address this issue we developed two primer sets: one revealed itself to be genus specific for Pseudochattonella and the other species‐specific for P. verruculosa. By subtracting cell estimates for P. verruculosa from combined results we could calculate cell numbers for P. farcimen. This approach has overcome the challenges posed by the very limited sequence availability and low gene variability between the two species. The qPCR assay was extensively tested for specificity, efficiency and sensitivity over an entire growth cycle in both single and mixed assemblages. Comparison of cell abundance estimates obtained by qPCR assay and microscopy showed no statistically significant difference until stationary and death phases. The assay was also tested on environmental samples collected during a small Pseudochattonella bloom in Denmark in March–April 2015. It was impossible to distinguish P. farcimen and P. verruculosa by light microscopy but qPCR showed both species were present. The two methods provided nearly identical cell numbers but the assay provided discrimination and enumeration of both species.  相似文献   

8.
Aims: Aeromonas is ubiquitous in aquatic environments and may cause infectious diseases in fish and humans. However, reliable and specific methods to evaluate the diversity and dynamics of Aeromonas populations are currently unavailable. This study aimed to develop PCR–DGGE methodologies for culture‐independent analysis of Aeromonas populations in water systems. Methods and Results: Three primer sets were designed to amplify selected sections of genes gyrB, rpoD and sodB from Aeromonas. Their specificity was confirmed by in silico analysis and by PCR on DNA from pure cultures. Estuarine water samples were analyzed by PCR–DGGE using those primers. DGGE patterns clearly clustered according to seasonal factors, and Aeromonas communities were surprisingly stable along a salinity gradient. Sequences of cloned amplicons affiliated to sequences belonging to seven Aeromonas species previously isolated from the same environment. Conclusions: The three systems used showed to be useful to describe the diversity of Aeromonas communities. However, the combined use of more than one primer set is advisable. Significance and Impact of the Study: The methods presented here can be applied to understand the natural pool of Aeromonas and also to monitor and control these bacteria in aquatic reservoirs.  相似文献   

9.
Acidovorax citrulli can be divided into two genetic groups: group I and group II based primarily on pulsed‐field gel electrophoresis (PFGE) and multilocus sequence classification (MLST). To distinguish more rapidly between strains of the two groups, a pair of specific primer for specific polymerase chain reaction (PCR) that can identify group II strains was designed based on the pilL gene of a group II strain, AAC00‐1. PCR results showed that a 332‐bp band was generated for 51 of 52 group II strains whereas only three of 93 group I strains were positive, largely consisting with previous studies of A. citrulli classification. Results of PCR showed the primers were able to detect group II strains of A. citrulli and distinguish between strains of groups I and II rapidly and accurately.  相似文献   

10.
Aims: This study describes an approach for genotyping Giardia cysts obtained from wastewater treatment plants (WTPs) in Spain using real‐time PCR (qPCR) in combination with immunomagnetic beads. Methods and Results: A 50‐cycle amplification of a 74‐bp fragment of the Giardia beta‐giardin gene was adopted from a previous qPCR method. Additionally, two locked nucleic acid (LNA) probes were designed (LNA P434 P1 for assemblage A and LNA P434 H3 for assemblage B). All 16 wastewater samples analysed were positive with the immunofluorescence assay (IFA). Assemblage A was detected in all WTP samples using primer–LNA probe P434 P1 set. Giardia duodenalis identification was confirmed by PCR–RFLP analysis and sequencing of the β‐giardin gene in the water samples found positive by IFA and qPCR. Among the 16 assemblage A isolates that were sequenced, two subtypes were identified; 11 corresponded to the A2 subgenotype, whereas three corresponded to the subgenotype A3. A mixture of subgenotypes was found in the remaining two isolates. Conclusions: The newly developed qPCR assays were able to discern G. duodenalis assemblages A and B in wastewater. Significance and Impact of the Study: The real‐time PCR assays provided a rapid method for detection and one‐step genotyping of G. duodenalis from wastewater samples, and its application would contribute to understanding the distribution and abundance of G. duodenalis assemblages A and B in wastewater.  相似文献   

11.
A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms.  相似文献   

12.
Aims: To develop a SYBR Green quantitative PCR assay (qPCR) for the specific detection of Morganella morganii, a fish pathogen responsible for the Histamine Fish Poisoning. Methods and Results: A new primer set, amplifying a 179‐bp fragment of the 16S rRNA gene, was selected for specificity, and 14 M. morganii strains and 32 non‐Morganella strains were evaluated. The melting temperature of 84°C was consistently specific for the amplicon. Two standard curves were constructed: the minimum detection sensitivity was 0·563 pg of pure DNA, corresponding to DNA extracted from nine cells of M. morganii. The qPCR assay was evaluated in experiments with seeded fish samples, and the regression coefficient values were calculated. Conclusions: A highly specific and rapid assay was developed for the detection of M. morganii in tuna fish samples. Significance and Impact of the Study: This method represents the first study about the quantification of pathogenic M. morganii in fish products. This approach can be utilized to prevent the presence of this undesirable species in the food chain.  相似文献   

13.
Abundance, variability and chromosomal location of microsatellites in wheat   总被引:51,自引:0,他引:51  
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.  相似文献   

14.
We established Fe(III)‐reducing co‐cultures of two species of metal‐reducing bacteria, the Gram‐positive Desulfotomaculum reducens MI‐1 and the Gram‐negative Geobacter sulfurreducens PCA. Co‐cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co‐culture. Co‐cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co‐cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co‐cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co‐culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c‐type cytochromes and type IV pili proteins, were significantly increased in abundance in co‐cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co‐cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co‐culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co‐cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.  相似文献   

15.
Aims: The analyses targeting multiple functional genes were performed on the samples of crude oil‐contaminated soil, to investigate community structures of organisms involved in monoaromatic hydrocarbon degradation. Methods and Results: Environmental samples were obtained from two sites that were contaminated with different components of crude oil. The analysis on 16S rRNA gene revealed that bacterial community structures were clearly different between the two sites. The cloning analyses were performed by using primers specific for the catabolic genes involved in the aerobic or anaerobic degradation of monoaromatic hydrocarbons, i.e. xylene monooxygenase (xylM), catechol 2,3‐dioxygenase (C23O), and benzoyl‐CoA reductase (bcr) genes. From the result of xylM gene, it was suggested that there are lineages specific to the respective sites, reflecting the differences of sampling sites. In the analysis of the C23O gene, the results obtained with two primer sets were distinct from each other. A comparison of these suggested that catabolic types of major bacteria carrying this gene were different between the two sites. As for the bcr gene, no amplicon was obtained from one sample. Phylogenetic analysis revealed that the sequences obtained from the other sample were distinct from the known sequences. Conclusions: The differences between the two sites were demonstrated in the analyses of all tested genes. As for aerobic cleavage of the aromatic ring, it was also suggested that analysis using two primer sets provide more detailed information about microbial communities in the contaminated site. Significance and Impact of the Study: The present study demonstrated that analysis targeting multiple functional genes as molecular markers is practical to examine microbial community in crude oil‐contaminated environments.  相似文献   

16.
We investigated a harmful algal bloom (HAB) associated with the massive fish kills in Johor Strait, Malaysia, which recurred a year after the first incident in 2014. This incident has urged for the need to have a rapid and precise method in HAB monitoring. In this study, we develop a SYBR green‐based real‐time PCR (qPCR) to detect the culpable dinoflagellate species, Karlodinium australe. Species‐specific qPCR primers were designed in the gene region of the second internal transcribed spacer of the ribosomal RNA gene (rDNA). The species specificity of the primers designed was evaluated by screening on the non‐target species (Karlodinium veneficum, Takayama spp., and Karenia spp.) and no cross‐detection was observed. The extractable gene copies per cell of K. australe determined in this study were 19 998 ± 505 (P < 0.0001). Estimation of cell densities by qPCR in the experimental spiked samples showed high correlation with data determined microscopically (R2 = 0.93). Using the qPCR assay developed in this study, we successfully detected the 2015 bloom species as K. australe. Single‐cell PCR and rDNA sequencing from the field samples further confirmed the finding. With the sensitivity as low as five cells, the qPCR assay developed in this study could effectively and rapidly detect cells of K. australe in the environmental samples for monitoring purpose.  相似文献   

17.
18.
The flavobacterial genus Zobellia is considered as a model to study macroalgal polysaccharide degradation. The lack of data regarding its prevalence and abundance in coastal habitats constitutes a bottleneck to assess its ecological strategies. To overcome this issue, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH) methods targeting the 16S rRNA gene were optimized to specifically detect and quantify Zobellia on the surface of diverse macroalgae. The newly designed qPCR primers and FISH probes targeted 98 and 100% of the Zobellia strains in silico and their specificity was confirmed using pure bacterial cultures. The dynamic range of the qPCR assay spanned 8 orders of magnitude from 10 to 108 16S rRNA gene copies and the detection limit was 0.01% relative abundance of Zobellia in environmental samples. Zobellia-16S rRNA gene copies were detected on all surveyed brown, green and red macroalgae, in proportion varying between 0.1 and 0.9% of the total bacterial copies. The absolute and relative abundance of Zobellia varied with tissue aging on the kelp Laminaria digitata. Zobellia cells were successfully visualized in Ulva lactuca and stranded Palmaria palmata surface biofilm using CARD-FISH, representing in the latter 105 Zobellia cells·cm−2 and 0.43% of total bacterial cells. Overall, qPCR and CARD-FISH assays enabled robust detection, quantification and localization of Zobellia representatives in complex samples, underlining their ecological relevance as primary biomass degraders potentially cross-feeding other microorganisms.  相似文献   

19.
Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures.  相似文献   

20.
Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus, Paenibacillus, Brevibacillus, Geobacillus, Alicyclobacillus, Sulfobacillus, Clostridium, and Desulfotomaculum, as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum. A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 104 cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号