首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia duodenalis is one of the most prevalent enteroparasites in children. This parasite produces several clinical manifestations. The aim of this study was to determine the prevalence of genotypes of G. duodenalis causing infection in a region of southeastern Mexico. G. duodenalis cysts were isolated (33/429) from stool samples of children and molecular genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, targeting the triosephosphate isomerase ( tpi ) and glutamate dehydrogenase ( gdh ) genes. The tpi gene was amplified in all of the cyst samples, either for assemblage A (27 samples) or assemblage B (6 samples). RFLP analysis classified the 27 tpi -A amplicons in assemblage A, subgenotype I. Samples classified as assemblage B were further analysed using PCR-RFLP of the gdh gene and identified as assemblage B, subgenotype III. To our knowledge, this is the first report of assemblage B of G. duodenalis in human clinical samples from Mexico.  相似文献   

2.
Giardia duodenalis is an important zoonotic pathogen, causes diarrhea in humans and animals worldwide. To date, few data are available on the prevalence of G. duodenalis in rabbits in China. In total, 955 fecal samples were collected from rabbits during 2008–2011 in Henan Province, Central China. The overall prevalence of G. duodenalis was 8.4% (80/955) on microscopic analysis, with the highest infection rate (11.3%) in rabbits aged 91–200 d. All G. duodenalis‐positive isolates were characterized at the small subunit ribosomal RNA, β‐giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase genes. Two assemblages and a mixed assemblage were detected in the rabbits: assemblage B (n = 26), assemblage E (n = 2), and a mixed assemblage of B and E (n = 4). Assemblage B isolates showed variability at the nucleotide sequences belonging to the so‐called subtype BIV, based on analysis of multiple genes. This is the first report of G. duodenalis assemblage E in rabbits, and one novel subtype of assemblage E was identified through sequence analysis of gdh and bg genes, respectively. Our data suggest that rabbits may be reservoirs of G. duodenalis cysts potentially infectious to humans.  相似文献   

3.
Giardia cysts in 131 raw wastewater samples from Milwaukee, Wis., were genotyped by sequence analysis of the triosephosphate isomerase gene which showed the presence of two distinct genotypes (assemblages A and B) of Giardia duodenalis. Of the 131 samples, 111 belonged to assemblage A, and the remaining samples belonged to assemblage B. A high degree of genetic polymorphism was evident within the assemblage B cluster, with 10 distinct subgenotypes identified, eight of which have not been reported before.  相似文献   

4.
Of the seven genetic groups, or assemblages, currently recognized in the Giardia duodenalis species complex, only assemblages A and B are associated with human infection, but they also infect other mammals. Recent investigations have suggested the occurrence of genetic exchanges among isolates of G. duodenalis, and the application of assemblage-specific PCR has shown both assemblages A and B in a significant number of human infections. In this work, three real-time quantitative (qPCR) assays were developed to target the G. duodenalis triose phosphate isomerase, glutamate dehydrogenase, and open reading frame C4 sequences. Primers were designed to allow the specific amplification of the DNA of assemblage A or B and to generate products distinguishable by their melting curves or, after qPCR, by their sequences, sizes, or restriction patterns. The assays showed full specificity and detected DNA from a single trophozoite (4 to 8 target copies). We applied these assays, as well as a TaqMan assay that targets the β-giardin gene, to genomic DNA extracted from 30 human stools and to Giardia cysts purified by immunomagnetic capture from the same samples. Simultaneous detection of both assemblages was observed in a large number of DNAs extracted from stools, and experiments on the cysts purified from the same samples showed that this was essentially attributable to mixed infections, as only one assemblage was detected when dilutions of cysts were tested. In a few cases, detection of both assemblages was observed even when single cysts were tested. This result, which suggests the presence of recombinants, needs to be confirmed using more accurate methods for cyst separation and enumeration. The assays described in this study can be used to detect Giardia cysts infectious to humans in samples from animals and in water and food.Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia) is the only species within the genus Giardia that infects humans, although it is also found in other mammals, including pets and livestock (1). The infection has a global distribution and, with an estimated 2.8 × 108 cases per year, represents the most common gastrointestinal parasitic infection of humans in developed countries (20). In Asia, Africa, and Latin America, about 200 million people have symptomatic giardiasis, with some 500,000 new cases reported each year (35). Several characteristics of G. duodenalis influence the epidemiology of infection: (i) in humans, the infective dose is about 10 to 100 cysts; (ii) cysts are immediately infectious when excreted in feces and can be transmitted by person-to-person or animal-to-animal contact; (iii) cysts are remarkably stable and can survive for weeks to months in the environment; and (iv) environmental contamination can lead to the contamination of drinking water and food (6, 32).A considerable amount of data has shown that G. duodenalis should be considered a species complex whose members show little variation in their morphology yet can be assigned to at least seven distinct assemblages (A to G) based on genetic analyses (7, 34). The analysis of more than a thousand human isolates from different geographical locations, examined by PCR amplification of DNA extracted directly from feces, has demonstrated that in almost all cases, only G. duodenalis assemblages A and B are associated with human infections (6). The prevalence of each assemblage varies considerably from country to country; assemblage B seems more common overall, but no strong conclusions can be drawn from current data. The remaining assemblages (C to G) are likely to be host specific, as assemblages C and D have been identified in dogs, cats, coyotes, and wolves; assemblage E in cattle, sheep, goats, pigs, water buffaloes, and muflons; assemblage F in cats; and assemblage G in rats.The epidemiology of human giardiasis is further complicated by the occurrence of mixed infections and the possibility of genetic exchanges between isolates of assemblage A (10) or even between isolates of assemblages A and B (21, 33). Ideally, genotyping should be performed on single cysts, as this allows a distinction between mixed infections and recombinants. To reach this technically demanding high level of sensitivity and specificity, real-time quantitative PCR (qPCR) appears to be a promising technique.This work describes the development of new qPCR assays that, through the use of assemblage-specific primers, allow the specific and simultaneous detection of DNAs of assemblages A and B. The application of these assays to DNA extracted from human stools and to cysts purified from the same samples is described.  相似文献   

5.
Three hundred and eighty six faecal specimens were randomly collected from 1- to 3-month-old lambs from 16 farms in Spain to investigate the presence of different genotypes of Giardia duodenalis. Individual specimens were examined by IFA (Immunofluorescence assay) and β-giardin PCR polymerase chain reaction. Cysts of G. duodenalis were shed by lambs in every flock analyzed, showing a prevalence by farms of 100%. The average prevalence of G. duodenalis for the 386 specimens was 42%, ranging from 8.3 to 80% depending on the farm. β-giardin PCR positive samples were sequenced to determine the genotypes present at each farm and seven new subtypes of β-giardin Assemblage E are reported in this study. In each farm, one to six different β-giardin subtypes were found, showing the high variability of the target. Also, one flock had the zoonotic Assemblage A. This is the first report of Giardia subgenotype A-1 in sheep in Spain.  相似文献   

6.
In this study, 352 fecal samples were analyzed for G. duodenalis from alpaca mothers and crias from three different areas of highland in Peru. The triosephosphate isomerase (TPI) gene of Giardia was amplified using a nested PCR protocol. Forty-six G. duodenalis-PCR positive samples were sequenced. G. duodenalis assemblage A was the most frequent followed by assemblage E. The former was seen in 37 animals whereas the latter was seen in nine. Most of the assemblage A infections were caused by the A1 subtype of sub-assemblage AI, except for three, which were caused by the A2 subtype of sub-assemblage AI. Assemblage A was found in all three geographic regions, while assemblage E was detected in crias from two regions. Among the four alpaca mothers positive for Giardia, three had assemblage AI and one had assemblage AII. Results of this study indicate that possible zoonotic transmission human to alpacas.  相似文献   

7.

Background

Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil.

Methodology/Principal Findings

The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B.

Conclusions/Significance

There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.  相似文献   

8.
9.
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a protozoan organism that can infect the intestinal tract of many animal species including mammals. Genetic heterogeneity of G. duodenalis is well described but the zoonotic potential is still not clear. In this study, we analysed 100 Giardia DNA samples directly isolated from human stool specimens, to get more insight in the different G. duodenalis assemblages present in the Dutch human population. Results showed that these human isolates could be divided into two main Assemblages A and B within the G. duodenalis group on the basis of PCR assays specific for the Assemblages A and B and the DNA sequences of 18S ribosomal RNA and the glutamate dehydrogenase (gdh) genes. Genotyping results showed that G. duodenalis isolates originating from Dutch human patients belonged in 35% of the cases to Assemblage A (34/98) and in 65% of the cases to Assemblage B (64/98) whereas two human cases remained negative in all assays tested. In addition, we compared these human samples with animal samples from the Netherlands and human and animal samples from other countries. A phylogenetic analysis was carried out on the DNA sequences obtained from these Giardia and those available in GenBank. Using gdh DNA sequence analysis, human and animal Assemblage A and B Giardia isolates could be identified. However, phylogenetic analysis revealed different sub-clustering for human and animal isolates where host-species-specific assemblages (C, D, E, F and G) could be identified. The geographic origin of the human and animal samples was not a discriminating factor.  相似文献   

10.
Giardia is frequently detected in stools of non-human primates (NHP). However, a molecular identification has been rarely applied to Giardia isolates from NHP, and the distribution of the zoonotic assemblages A and B remains unclear. Moreover, little is known about the genetic variability among the isolates, although this may contribute to the elucidation of the different transmission pathways, including the role of NHP as a reservoir for human giardiasis. Therefore, 258 Giardia samples from 31 NHP species housed in nine zoological gardens and one sanctuary in Belgium and The Netherlands were characterised based on an assemblage-specific PCR targeting the triose phosphate isomerase (tpi) gene to identify both assemblage A and B infections. In addition, a multi-locus sequencing approach based on the glutamate dehydrogenase, the tpi and the β-giardin genes was used to examine both the genetic variability and the ability to allocate these isolates to different NHP groups. Overall, assemblage B was the most prevalent (78.6%), but mixed assemblage A and B infections occurred in 32.7% of the samples. Sequencing of the isolates revealed the presence of new polymorphisms for both assemblages and at the three loci examined. The majority of the assemblage B isolates could not be grouped into recently described sub-assemblages, particularly at the tpi gene. Isolates could only be allocated to a specific group when polymorphisms of the three loci were combined. The results confirm that NHP are a potential reservoir for zoonotic transmission and advocate the use of assemblage-specific primers in molecular epidemiological surveys, as mixed infections are likely to be underestimated. The high level of heterogeneity within assemblages indicates that a revised nomenclature of these sub-assemblages is needed, but points out the potency of a multi-locus sequencing approach to unravel the complex epidemiology of Giardia duodenalis.  相似文献   

11.
To identify the animal sources for Cryptosporidium and Giardia contamination, we genotyped Cryptosporidium and Giardia spp. in wildlife from Sydney’s water catchments using sequence analysis at the 18S rRNA locus for Cryptosporidium and 18S rRNA and glutamate dehydrogenase (gdh) for Giardia. A total of 564 faecal samples from 16 different host species were analysed. Cryptosporidium was identified in 8.5% (48/564) samples from eight host species and Giardia was identified in 13.8% (78/564) from seven host species. Eight species/genotypes of Cryptosporidium were identified. Five G. duodenalis assemblages were detected including the zoonotic assemblages A and B.  相似文献   

12.
The intestinal protozoan Giardia duodenalis includes 2 genetically distinct assemblages, A and B, which are responsible for human infections. Little is known so far on the genotypes of G. duodenalis human isolates in France. The present characterization of 19 French clinical isolates was aimed at determining their genotype patterns and associations with clinical symptoms, and in vivo metronidazole resistance, respectively. Based on both triose-phosphate isomerase (tpi) and β-giardin (bg) gene sequences, twelve isolates were identified as assemblage A, and 7 as assemblage B for the 2 gene loci. Sub-genotyping heterogeneities were observed in 15/19 isolates attributed to either A or B assemblage. They include frequent mismatches and intra-assemblage discordances and mixed positions, which were found more frequently in tpi than in bg sequences, and in assemblage B than in assemblage A sequences. No association was found between sub-genotypes, clinical symptoms and metronidazole sensitivity. Present data underline the need for improvements in the standardization of G. duodenalis multilocus genotyping approach for further molecular epidemiologic studies of giardiasis.  相似文献   

13.

Background

Giardia duodenalis infects humans and other mammals by ingestion of cysts in contaminated water or food, or directly in environments with poor hygiene. Eight assemblages, designated A–H, are described for this species.

Methodology/Principal Findings

We investigated by microscopy or by direct immunofluorescence technique the occurrence of G. duodenalis in 380 humans, 34 animals, 44 samples of water and 11 of vegetables. G. duodenalis cysts present in samples were genotyped through PCR-RFLP of β giardin and glutamate dehydrogenase (gdh) genes and sequencing of gdh. The gdh gene was amplified in 76.5% (26/34) of the human faeces samples with positive microscopy and in 2.9% (1/34) of negative samples. In 70.4% (19/27) of the positive samples were found BIV assemblage. In two samples from dogs with positive microscopy and one negative sample, assemblages BIV, C, and D were found. Cysts of Giardia were not detected in water samples, but three samples used for vegetable irrigation showed total coliforms above the allowed limit, and Escherichia coli was observed in one sample. G. duodenalis BIV was detected in two samples of Lactuca sativa irrigated with this sample of water. BIV was a common genotype, with 100% similarity, between different sources or hosts (humans, animals and vegetables), and the one most often found in humans.

Conclusions/Significance

This is the first study in Brazil that reports the connection among humans, dogs and vegetables in the transmission dynamics of G. duodenalis in the same geographic area finding identical assemblage. BIV assemblage was the most frequently observed among these different links in the epidemiological chain.  相似文献   

14.
Apart from a single record in a shark, there have been no published studies conducted on Giardia genotypes in fish. The present study investigated the prevalence of Giardia in cultured fingerlings (= 227), wild freshwater (n = 227) and wild marine/estuarine species (n = 255) of fish in Western Australia by PCR amplification at the 18S rRNA, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and beta-giardin (bg) loci. Results revealed a low prevalence of Giardia, 3.8% (27/709), in fish hosts. The zoonotic Giardia species, Giardia duodenalis assemblages A, B as well as G. duodenalis assemblage E and Giardia microti were detected. The identification of zoonotic species of Giardia highlights the public health importance of investigating parasites within fish host species.  相似文献   

15.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

16.
Giardia duodenalis, originally regarded as a commensal organism, is the etiologic agent of giardiasis, a gastrointestinal disease of humans and animals. Giardiasis causes major public and veterinary health concerns worldwide. Transmission is either direct, through the faecal-oral route, or indirect, through ingestion of contaminated water or food. Genetic characterization of G. duodenalis isolates has revealed the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals, but the role of animals in the epidemiology of human infection is still unclear, despite the fact that the zoonotic potential of Giardia was recognised by the WHO some 30 years ago. Here, we performed an extensive genetic characterization of 978 human and 1440 animal isolates, which together comprise 3886 sequences from 4 genetic loci. The data were assembled into a molecular epidemiological database developed by a European network of public and veterinary health Institutions. Genotyping was performed at different levels of resolution (single and multiple loci on the same dataset). The zoonotic potential of both assemblages A and B is evident when studied at the level of assemblages, sub-assemblages, and even at each single locus. However, when genotypes are defined using a multi-locus sequence typing scheme, only 2 multi-locus genotypes (MLG) of assemblage A and none of assemblage B appear to have a zoonotic potential. Surprisingly, mixtures of genotypes in individual isolates were repeatedly observed. Possible explanations are the uptake of genetically different Giardia cysts by a host, or subsequent infection of an already infected host, likely without overt symptoms, with a different Giardia species, which may cause disease. Other explanations for mixed genotypes, particularly for assemblage B, are substantial allelic sequence heterogeneity and/or genetic recombination. Although the zoonotic potential of G. duodenalis is evident, evidence on the contribution and frequency is (still) lacking. This newly developed molecular database has the potential to tackle intricate epidemiological questions concerning protozoan diseases.  相似文献   

17.
This study aimed to identify the assemblages (or subassemblages) of Giardia duodenalis by using normal or nested PCR based on 4 genetic loci: glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), β-giardin (bg), and small subunit ribosomal DNA (18S rRNA) genes. For this work, a total of 216 dogs'' fecal samples were collected in Guangdong, China. The phylogenetic trees were constructed with MEGA5.2 by using the neighbor-joining method. Results showed that 9.7% (21/216) samples were found to be positive; moreover, 10 samples were single infection (7 isolates assemblage A, 2 isolates assemblage C, and 1 isolate assemblage D) and 11 samples were mixed infections where assemblage A was predominant, which was potentially zoonotic. These findings showed that most of the dogs in Guangdong were infected or mixed-infected with assemblage A, and multi-locus sequence typing could be the best selection for the genotype analysis of dog-derived Giardia isolates.  相似文献   

18.
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is an important zoonotic parasite infecting livestock (including pigs) through ingesting cysts in contaminated food or water. This parasite has been classified into eight different genetic assemblages, A to H. Here, we examined the individual-level prevalence of G. duodenalis in domestic pig farms and confirmed host specificity by genotype comparisons. Samples were collected from southern and central Korea, between May 2017 and January 2019. DNA directly extracted from 745 pig fecal specimens were tested by PCR for G. duodenalis small subunit ribosomal RNA (ssu rRNA), glutamate dehydrogenase (gdh), and β-giardin gene sequences. Based on ssu rRNA PCR, 110 (14.8%) were positive for G. duodenalis. Infection risk was the highest in the fattener group (31/139, 22.3%) and during the autumn season (52/245, 21.2%: p < .001). No statistically significant differences in risk for infection were observed between fecal types (normal versus diarrheal). Fifty ssu rRNA samples, three gdh samples, and five β-giardin samples were successfully sequenced and genotyped. Ssu rRNA assemblage sequence analysis identified E (40.0%, 20/50), D (34.0%, 17/50), C (24.0%, 12/50), and A (2.0%, 1/50). The gdh locus identified three samples as assemblage E, and the β-giardin locus identified four samples as assemblage E and one as assemblage C. Assemblage A sequences obtained (ssu rRNA; MK430919) had 100% identity with Giardia sequences isolated from a Korean individual (AJ293301), indicating the potential of zoonotic transmission. Continuous management and monitoring for prevention of transmission and protection of animal and human health are essential.  相似文献   

19.
Giardia and Cryptosporidium are important causes of diarrhoea in Bangladesh. The high prevalence of both parasites in humans and cattle in rural Bangladesh and the common use of water ponds by village inhabitants and their animals suggest a potential for zoonotic transmission. Direct transmission of Giardia and Cryptosporidium between cattle and their handlers and indirect transmission through water ponds was investigated. Faecal/stool samples were collected from 623 calves and 125 calf handlers in a cross-sectional survey. In two villages, water samples were collected monthly from water ponds and faecal/stool samples were collected monthly from inhabitants and their cattle. Giardia cysts and Cryptosporidium oocysts were detected in water samples and in faecal/stool samples and positive samples were genotyped, to determine their human or animal origin. The prevalence of Giardia and Cryptosporidium in calves was 22% and 5% respectively. In calf handlers, the prevalence of Giardia and Cryptosporidium was 11.2% and 3.2% respectively. Both in the cross-sectional survey and in the longitudinal study in the villages, G. duodenalis assemblage E was most prevalent in calves, while in humans assemblage AII, BIII and BIV were found. In cattle, Cryptosporidium parvum, C. bovis and C. andersoni were identified, but no Cryptosporidium sequences were obtained from humans. Giardia and Cryptosporidium were detected in 14/24 and 12/24 water samples respectively. G. duodenalis assemblage E and BIV (-like), as well as C. andersoni and C. hominis were identified. Although the presence of Giardia and Cryptosporidium in both water ponds suggests that water-borne transmission of Giardia and Cryptosporidium is possible, the genotyping results indicate that there is no significant direct or indirect (water-borne) transmission of Giardia between cattle and people in this area of rural Bangladesh. No conclusions could be drawn for Cryptosporidium, because of the low number of sequences that were obtained from human and water samples.  相似文献   

20.
Giardiasis is a notifiable disease of high prevalence in New Zealand, but there is limited knowledge about the sources of Giardia duodenalis genotypes that can potentially cause human infections. Dairy calves are one environmental source of Giardia isolates, but it is unknown whether they harbor genotypes that are potentially capable of causing infections in humans. To address these questions, 40 Giardia isolates from calves and 30 from humans, living in the same region and collected over a similar period, were genotyped using the β-giardin gene. The G. duodenalis genetic assemblages A and B were identified from both calves and humans, and genotype comparisons revealed a substantial overlap of identical genotypes from the two hosts for both assemblages. Significantly, no assemblage E (the genotype commonly found in cattle elsewhere in the world) has been detected in New Zealand livestock to date. Given recent and rapid land use conversions to dairy farming in many South Island regions of New Zealand, an increasingly large concentration of domestic cattle harboring genotypes potentially capable of causing infections in humans is particularly concerning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号