首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18618篇
  免费   2050篇
  国内免费   2669篇
  2024年   20篇
  2023年   314篇
  2022年   429篇
  2021年   993篇
  2020年   833篇
  2019年   1006篇
  2018年   897篇
  2017年   632篇
  2016年   864篇
  2015年   1299篇
  2014年   1576篇
  2013年   1586篇
  2012年   1872篇
  2011年   1601篇
  2010年   1065篇
  2009年   951篇
  2008年   1109篇
  2007年   938篇
  2006年   852篇
  2005年   734篇
  2004年   702篇
  2003年   557篇
  2002年   503篇
  2001年   314篇
  2000年   274篇
  1999年   234篇
  1998年   196篇
  1997年   161篇
  1996年   127篇
  1995年   128篇
  1994年   94篇
  1993年   74篇
  1992年   85篇
  1991年   56篇
  1990年   49篇
  1989年   32篇
  1988年   36篇
  1987年   30篇
  1986年   17篇
  1985年   19篇
  1984年   33篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   
2.
BackgroundPeripheral artery disease (PAD), which is caused by atherosclerosis, results in progressive narrowing and occlusion of the peripheral arteries and inhibits blood flow to the lower extremities. Therapeutic angiogenesis is a promising strategy for treating ischemia caused by PAD. Nitric oxide (NO) has been shown to be a key mediator of angiogenesis. It has been demonstrated that β-cyclodextrincan stimulate vessel growth in rabbit corneas. In this study, we assessed the mechanism of action and therapeutic potential of a new angiogenic molecule, (2-hydroxypropyl)-β-cyclodextrin (2HP-β-CD).ConclusionsTherapeutic angiogenesis by 2HP-β-CD may be beneficial to patients with PAD.  相似文献   
3.
Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible.  相似文献   
4.
5.
6.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
7.
8.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号