首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
We characterized the pattern and magnitude of phylogeographical variation among breeding populations of a long-distance migratory bird, the Wilson's warbler (Wilsonia pusilla), and used this information to assess the utility of mtDNA markers for assaying demographic connectivity between breeding and overwintering regions. We found a complex pattern of population differentiation in mitochondrial DNA (mtDNA) variation among populations across the breeding range. Individuals from eastern North America were differentiated from western individuals and the eastern haplotypes formed a distinct, well-supported cluster. The more diverse western group contained haplotype clusters with significant geographical structuring, but there was also broad mixing of haplotype groups such that no haplotype groups were population specific and the predominance of rare haplotypes limited the utility of frequency-based assignment techniques. Nonetheless, the existence of geographically diagnosable eastern vs. western haplotypes enabled us to characterize the distribution of these two groups across 14 overwintering locations. Western haplotypes were present at much higher frequencies than eastern haplotypes at most overwintering sites. Application of this mtDNA-based method of linking breeding and overwintering populations on a finer geographical scale was precluded by the absence of population-specific markers and by insufficient haplotype sorting among western breeding populations. Our results suggest that because migratory species such as the Wilson's warbler likely experienced extensive gene flow among regional breeding populations, molecular markers will have the greatest utility for characterizing breeding-overwintering connectivity at a broad geographical scale.  相似文献   

2.
Alexander M. Mills  Colin J. Weir 《Oikos》2007,116(12):2062-2070
We build a model with large-scale demographic consequences for migratory species. The model operates where four elements co-occur, and we rely on empirical research using migratory birds to demonstrate them. First, breeding ranges have internal structure flowing from natal philopatry. Second, fecundity varies geographically. Third, populations of different breeding provenances commingle during winter. And fourth, a population-limiting carrying capacity operates during winter. In the absence of breeding season population-limitation, only the breeding population with maximum fecundity persists. Consequently, some potential breeding areas that offer suitable and productive habitat are bereft of breeding birds because of the interplay between the geographical fecundity gradient and the shared winter quarters. Where breeding season population-limitation also plays a role for at least one population, one (or more) breeding population becomes permanently depressed, resulting in a density well below the carrying capacity of the productive breeding habitat that is occupied. In either case, not all populations fare equally well, despite net positive breeding season productivity. Changes in winter carrying capacity, for example habitat degradation in winter quarters, can lead to uneven effects on geographically defined breeding populations, even though there has been no change in the circumstances of the breeding range.  相似文献   

3.
Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.  相似文献   

4.
Biological impacts of climate change are exemplified by shifts in phenology. As the timing of breeding advances, the within‐season relationships between timing of breeding and reproductive traits may change and cause long‐term changes in the population mean value of reproductive traits. We investigated long‐term changes in the timing of breeding and within‐season patterns of clutch size, egg volume, incubation duration, and daily nest survival of three shorebird species between two decades. Based on previously known within‐season patterns and assuming a warming trend, we hypothesized that the timing of clutch initiation would advance between decades and would be coupled with increases in mean clutch size, egg volume, and daily nest survival rate. We monitored 1,378 nests of western sandpipers, semipalmated sandpipers, and red‐necked phalaropes at a subarctic site during 1993–1996 and 2010–2014. Sandpipers have biparental incubation, whereas phalaropes have uniparental incubation. We found an unexpected long‐term cooling trend during the early part of the breeding season. Three species delayed clutch initiation by 5 days in the 2010s relative to the 1990s. Clutch size and daily nest survival showed strong within‐season declines in sandpipers, but not in phalaropes. Egg volume showed strong within‐season declines in one species of sandpiper, but increased in phalaropes. Despite the within‐season patterns in traits and shifts in phenology, clutch size, egg volume, and daily nest survival were similar between decades. In contrast, incubation duration did not show within‐season variation, but decreased by 2 days in sandpipers and increased by 2 days in phalaropes. Shorebirds demonstrated variable breeding phenology and incubation duration in relation to climate cooling, but little change in nonphenological components of traits. Our results indicate that the breeding phenology of shorebirds is closely associated with the temperature conditions on breeding ground, the effects of which can vary among reproductive traits and among sympatric species.  相似文献   

5.
We compiled a >50‐year record of morphometrics for semipalmated sandpipers (Calidris pusilla), a shorebird species with a Nearctic breeding distribution and intercontinental migration to South America. Our data included >57,000 individuals captured 1972–2015 at five breeding locations and three major stopover sites, plus 139 museum specimens collected in earlier decades. Wing length increased by ca. 1.5 mm (>1%) prior to 1980, followed by a decrease of 3.85 mm (nearly 4%) over the subsequent 35 years. This can account for previously reported changes in metrics at a migratory stopover site from 1985 to 2006. Wing length decreased at a rate of 1,098 darwins, or 0.176 haldanes, within the ranges of other field studies of phenotypic change. Bill length, in contrast, showed no consistent change over the full period of our study. Decreased body size as a universal response of animal populations to climate warming, and several other potential mechanisms, are unable to account for the increasing and decreasing wing length pattern observed. We propose that the post‐WWII near‐extirpation of falcon populations and their post‐1973 recovery driven by the widespread use and subsequent limitation on DDT in North America selected initially for greater flight efficiency and latterly for greater agility. This predation danger hypothesis accounts for many features of the morphometric data and deserves further investigation in this and other species.  相似文献   

6.
Effects of predation danger on migration strategies of sandpipers   总被引:10,自引:0,他引:10  
David B .  Lank  Robert W .  Butler  John  Ireland  Ronald C .  Ydenberg 《Oikos》2003,103(2):303-319
We examine the potential selective importance of predation danger on the evolution of migration strategies of arctic‐breeding calidrid sandpipers. Adult calidrids truncate parental care for reasons not obviously related to levels of food abundance on the breeding areas or at migratory stopover sites, suggesting that a different trade‐off occurs between providing additional care and adult survivorship. The southward migrations of adult western sandpipers precede those of migratory peregrine falcons by almost a month. By moving early and quickly, adults remain ahead of migrant falcons all the way to their non‐breeding areas, where they rapidly moult flight feathers. They complete the moult just as falcons arrive in late September–October. By migrating early, they avoid exposure to falcons when they are unusually vulnerable, due to the requirements for fuelling migratory flight and of wing feather moult. Juvenile western sandpipers migrate south just as falcon numbers start to increase, but do not moult flight feathers in their first winter. Pacific dunlin use an alternative strategy of remaining and moulting in Alaska after falcons depart, and migrating to their overwintering sites after migrants have passed. East of the Rocky Mountains, the southbound migration of falcons begins 4–6 weeks later. Southbound semipalmated sandpipers make extended migratory stopovers, but their lengths of stay shorten prior to falcon migration to the sites in September. Predation danger also may affect the evolution of migration routes. Southbound western sandpipers fly directly from Alaska to southern British Columbia, in contrast to the multi‐stage journey northward along the Alaska panhandle. We estimate that a direct flight would be more economical on northward migration, but may be avoided because it would expose sandpipers to higher mass‐dependent predation danger from migratory falcons, which travel north with sandpipers. By contrast, few raptors are present in Alaska during preparation for the southward flight. A temporal and spatial window of safety may also permit semipalmated sandpipers to become extremely vulnerable while preparing for trans‐Atlantic southward flights. Danger management may account for the these previously enigmatic features of calidrid migration strategies, and aspects of those of other birds.  相似文献   

7.
The presence of top predators can affect prey behaviour, morphology and life history, and thereby can produce indirect population consequences greater and further reaching than direct depredation would have alone. Raptor species in the Americas are recovering since restrictions on the use of dichlorodiphenyltrichloroethane (DDT) and the implementation of conservation measures, in effect constituting a hemisphere-wide predator-reintroduction experiment, and profound effects on populations of their prey are to be expected. Here, we document changes in the behaviour of western sandpipers (Calidris mauri) at migratory stopover sites over two decades. Since 1985, migratory body mass and stopover durations of western sandpipers have fallen steadily at some stopovers in the Strait of Georgia, British Columbia. Comparisons between years, sites and seasons strongly implicate increasing danger from the recovery of peregrine falcons (Falco peregrinus) as a causal factor. A decade-long ongoing steep decline in sandpiper numbers censused on our study site is explained entirely by the shortening stopover duration, rather than fewer individuals using the site. Such behavioural changes are probably general among migratory shorebird species, and may be contributing to the widespread census declines reported in North America.  相似文献   

8.
The effects of relative fuel load on migration speed and on vulnerability have been investigated, but the effects of seasonal variation in predation danger on the amount of fuel and duration of stopover have not been considered. We analyzed seasonal patterns of stopover residence times for western and semipalmated sandpipers Calidris mauri and C. pusilla on southward migration in relation to the passage of migratory peregrine falcons Falco peregrinus. We predicted that individuals on stopover far in advance of the seasonal arrival of falcons would adjust stopover length and hence relative fuel load to migrate slowly and cautiously. We predicted that individuals on stopover later in the season would increase migratory speed as the arrival of migratory falcons came closer, while individuals on stopover under or behind the passage of falcons would migrate slowly. Adult and juvenile semipalmated and adult western sandpipers migrated prior to seasonal increases in peregrine abundance, and as predicted, the seasonal patterns of their stopover durations are consistent with an increase in the speed of migration as the date of peregrine arrival approached. Juvenile western sandpipers, in contrast, migrating concurrently with falcons, slowed their speed of migration as predator abundance increased. Stopover patterns differ between species due to different relative fuel loads. The results fit predictions made based on a ‘mortality‐minimizing’ migration strategy.  相似文献   

9.
Lyons JE  Collazo JA  Guglielmo CG 《Oecologia》2008,155(3):417-427
Long-distance bird migration is fueled by energy gathered at stopover sites along the migration route. The refueling rate at stopover sites is a determinant of time spent at stopovers and impacts the overall speed of migration. Refueling rate during spring migration may influence the fitness of individuals via changes in the probability of successful migration and reproduction during the subsequent breeding season. We evaluated four plasma lipid metabolites (triglycerides, phospholipids, β-OH-butyrate, and glycerol) as measures of refueling rate in free-living semipalmated sandpipers (Calidris pusilla) captured at non-breeding areas. We described the spatial and temporal variation in metabolite concentrations among one winter site in the Dominican Republic and four stopover sites in the South Atlantic and Mid-Atlantic Coastal Plain regions of North America. Triglycerides and β-OH-butyrate clearly identified spatial variation in refueling rate and stopover habitat quality. Metabolite profiles indicated that birds had higher refueling rates at one site in the Mid-Atlantic Coastal Plain than at three sites on the South Atlantic Coastal Plain and one site in the Dominican Republic. Temporal variation in lipid metabolites during the migration season suggested that male semipalmated sandpipers gained more weight at stopovers on the South Atlantic Coastal Plain than did females, evidence of differential migration strategies for the sexes. Plasma lipid metabolites provide information on migration physiology that may help determine stopover habitat quality and reveal how migratory populations use stopover sites to refuel and successfully complete long-distance migrations.  相似文献   

10.
Parental brood attendance patterns vary greatly among shorebird species. For monogamous calidridine species, biparental care with female-first brood departure is most common. It is believed that adult sandpipers balance potential individual survival costs associated with extended parental care against the benefit gained by their brood of prolonged parental care. These costs and benefits are difficult to quantify and factors affecting the termination of parental brood attendance are unclear. We compared clutch size, nesting phenology, and parental attendance patterns of Western Sandpipers Calidris mauri at Nome and Kanaryarmiut, Alaska, sites separated by three degrees of latitude. The sites differed in breeding density and duration of breeding season, but the distribution of clutch sizes did not differ between sites or between nesting attempts. Parental attendance patterns were similar between sites, suggesting that parental attendance is a highly conserved life-history trait in Western Sandpipers. Male Western Sandpipers attended broods longer than females, and the duration of parental attendance decreased at a similar rate for both sexes as the season progressed. Male and female Western Sandpipers undertake differential migrations to their non-breeding grounds, with males typically settling at more northerly locations and females at more southerly sites, a migration pattern shared by certain other monogamous calidridine species. These same species exhibit similar parental brood attendance patterns, suggesting the strong role of overall migration distance in shaping the expression of parental attendance behaviours. A contrast of more geographically disjunct sites coupled with a better understanding of the migratory connectivity between Western Sandpiper breeding and non-breeding populations would elucidate the role of cross-seasonal effects on parental brood attendance decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号