首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RICHARD T. HOLMES 《Ibis》2007,149(S2):2-13
Effective conservation and management of migratory bird species requires an understanding of when and how their populations are limited and regulated. Since 1969, my colleagues and I have been studying migratory songbird populations in their breeding quarters at the Hubbard Brook Experimental Forest in north-central New Hampshire, USA, and since 1986, in their winter quarters in the Greater Antilles (Jamaica). Long-term data on the abundance and demography of these populations, coupled with experimental tests of mechanisms, indicate that processes operating in the breeding area (e.g. density-dependent fecundity, food limitation) are sufficient to limit and regulate the local abundance of these species. At the same time, limiting factors operating in the non-breeding season (e.g. climate-induced food limitation in winter quarters and especially mortality during migration) also have important impacts on migrant populations. Furthermore, recent studies have shown that limiting processes during the winter period can carry over into the breeding season and affect reproductive output. These findings clearly demonstrate that to understand changes in abundance of long-distance migrant species requires knowledge of events operating throughout the annual cycle, which presents a challenge to researchers, managers and others concerned with the welfare of these species.  相似文献   

2.
RICHARD T. HOLMES 《Ibis》2007,149(Z2):2-13
Effective conservation and management of migratory bird species requires an understanding of when and how their populations are limited and regulated. Since 1969, my colleagues and I have been studying migratory songbird populations in their breeding quarters at the Hubbard Brook Experimental Forest in north‐central New Hampshire, USA, and since 1986, in their winter quarters in the Greater Antilles (Jamaica). Long‐term data on the abundance and demography of these populations, coupled with experimental tests of mechanisms, indicate that processes operating in the breeding area (e.g. density‐dependent fecundity, food limitation) are sufficient to limit and regulate the local abundance of these species. At the same time, limiting factors operating in the non‐breeding season (e.g. climate‐induced food limitation in winter quarters and especially mortality during migration) also have important impacts on migrant populations. Furthermore, recent studies have shown that limiting processes during the winter period can carry over into the breeding season and affect reproductive output. These findings clearly demonstrate that to understand changes in abundance of long‐distance migrant species requires knowledge of events operating throughout the annual cycle, which presents a challenge to researchers, managers and others concerned with the welfare of these species.  相似文献   

3.
The mechanisms regulating bird populations are poorly understood and controversial. We provide evidence that a migratory songbird, the black-throated blue warbler (Dendroica caerulescens), is regulated by multiple density-dependence mechanisms in its breeding quarters. Evidence of regulation includes: stability in population density during 1969-2002, strong density dependence in time-series analyses of this period, an inverse relationship between warbler density and annual fecundity, and a positive relationship between annual fecundity and recruitment of yearlings in the subsequent breeding season. Tests of the mechanisms causing regulation were carried out within the Hubbard Brook Experimental Forest, New Hampshire, during 1997-1999. When individuals from abutting territories were experimentally removed in a homogeneous patch of high-quality habitat, the fecundity of focal pairs nearly doubled, revealing a locally operating crowding mechanism. A site-dependence mechanism was indicated by an inverse relationship between population size and mean territory quality, as well as by greater annual fecundity on the sites that were most frequently occupied and of highest quality. These site-dependence relationships were revealed by intensive monitoring of territory quality and demography at the landscape spatial scale. Crowding and site-dependence mechanisms, therefore, acted simultaneously but at different spatial scales to regulate local abundance of this migratory bird population.  相似文献   

4.
We examined how conditions prior to migration influenced migration performance of two breeding populations of black‐and‐white warblers Mniotilta varia by linking information on the migrant's winter habitat quality, measured via stable carbon isotopes, with information on their breeding destination, measured via stable hydrogen isotopes. The quality of winter habitat strongly influenced the timing of migration when we accounted for differential timing of migration between breeding populations. Among birds migrating to the same breeding destination, males and females arriving early to the stopover site originated from more mesic habitat than later arriving birds, suggesting that the benefits of occupying high‐quality mesic habitat during the winter positively influence the timing of migration. However, male warblers arriving early to the stopover site were not in better migratory condition than later arriving conspecifics that originated from poor‐quality xeric winter habitat, regardless of breeding destination. The two breeding populations stopover at the study site during different time periods, suggesting that the lower migratory condition of early birds is not a function of the time of season, but potentially a migrant's migration strategy. Strong selection pressures to arrive early on the breeding grounds to secure high‐quality breeding territories may drive males from high‐quality winter habitat to minimize time at the expense of energy. This migration strategy would result in a smaller margin of safety to buffer the effects of adverse weather or scarcity of food, increasing the risk of mortality. The migratory condition of females was the same regardless of the timing of migration or breeding destination, suggesting that females adopt a strategy that conserves energy during migration. This study fills an important gap in our understanding of the linkages between winter habitat quality and factors that influence the performance of migration, the phase of the annual cycle thought to be limiting most migratory bird populations.  相似文献   

5.
Events happening in one season can affect life‐history traits at (the) subsequent season(s) by carry‐over effects. Wintering conditions are known to affect breeding success, but few studies have investigated carry‐over effects on survival. The Eurasian oystercatcher Haematopus ostralegus is a coastal wader with sedentary populations at temperate sites and migratory populations in northern breeding grounds of Europe. We pooled continental European ringing‐recovery datasets from 1975 to 2000 to estimate winter and summer survival rates of migrant and resident populations and to investigate long‐term effects of winter habitat changes. During mild climatic periods, adults of both migratory and resident populations exhibited survival rates 2% lower in summer than in winter. Severe winters reduced survival rates (down to 25% reduction) and were often followed by a decline in survival during the following summer, via short‐term carry‐over effects. Habitat changes in the Dutch wintering grounds caused a reduction in food stocks, leading to reduced survival rates, particularly in young birds. Therefore, wintering habitat changes resulted in long‐term (>10 years) 8.7 and 9.4% decrease in adult annual survival of migrant and resident populations respectively. Studying the impact of carry‐over effects is crucial for understanding the life history of migratory birds and the development of conservation measures.  相似文献   

6.
Aim Migration has been suggested to promote large breeding ranges among birds because of the greater mobility of migratory compared with non‐migratory species, but migration has also been suggested to restrict breeding ranges because of evolutionary constraints imposed by the genetically based migration control programme. We aim to investigate the association between migration and the breeding ranges of both land birds and pelagic birds breeding in the Arctic region. Location The Arctic region. Methods Information on breeding and wintering ranges and migratory status of bird species breeding in the arctic tundra biome was compiled from the literature. The association between breeding range, migration distance and primary winter habitat was tested using multivariate generalized linear models and pair‐wise Mann–Whitney U‐tests. Phylogenetic effects were tested for using Mantel’s permutation tests. Results We found different relationships depending on the species’ major winter habitat. Among birds that are pelagic during winter, long‐distance migrants have the largest breeding ranges, while among terrestrial birds, residents and short‐distance migrants have the largest breeding ranges. Breeding ranges of coastal birds of all migratory distance classes are comparatively restricted. Main conclusions As a new explanation for this pattern we suggest that the possibility of colonizing large winter ranges is a key factor for the subsequent expansion of breeding ranges in arctic bird communities and possibly also in bird communities of other regions of the world. Because of the reversal in the relative extent of continents and oceans between the hemispheres, longitudinally wide winter ranges are more likely for long‐distance than short‐distance migrants among pelagic birds, while the reverse holds true for birds that use terrestrial winter habitats. For coastal birds both continents and oceans form barriers restricting colonization of extensive winter quarters and consequently also of extensive breeding ranges, regardless of the distance to the winter quarters.  相似文献   

7.
Identification of relationships among geographically distinct populations of migratory species can provide an understanding of breeding and natal philopatry, migration pathways, and population mixing during winter. We used random amplified polymorphic DNA (RAPD) analyses to search for markers specific to difficult-to-differentiate shorebird species (e.g. long-billed dowitcher Limnodromus scolopaceus and short-billed dowitcher L. griseus ) as well as geographically distinct breeding populations of Hudsonian godwits Limosa haemastica , red-necked phalaropes Phalaropus lobatus , semipalmated plovers Charadrius semipalmatus , dunlin Calidris alpina , pectoral sandpipers C. melanotos , semipalmated sandpipers C. pusilla and western sandpipers C. mauri . Markers clearly differentiated all shorebird species. Estimates of population differentiation varied greatly among species ( F ST= 0.095–0.685) and correlated with interspecific variation in philopatry and geographical separation of breeding populations. We assigned individuals to putative breeding locales with greater certainty in well-differentiated species than in poorly differentiated species. Our findings indicate specific phylogeographical structure varies among species, which has strong implications for conservation of habitats within migratory corridors. We suggest that RAPDs are useful in identifying geographical populations of migratory species and that molecular markers should be considered for tracking migratory birds throughout the annual cycle.  相似文献   

8.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

9.
When species occupy habitats that vary in quality, choice of habitat can be critical in determining individual fitness. In most migratory species, juveniles migrate independently of their parents and must therefore choose both breeding and winter habitats. Using a unique dataset of marked black-tailed godwits (Limosa limosa islandica) tracked throughout their migratory range, combined with analyses of stable carbon isotope ratios, we show that those individuals that occupy higher quality breeding sites also use higher quality winter sites. This seasonal matching can severely inflate inequalities in individual fitness. This population has expanded over the last century into poorer quality breeding and winter habitats and, across the whole population; individual birds tend to occupy either novel or traditional sites in both seasons. Winter and breeding season habitat selection are thus strongly linked throughout this population; these links have profound implications for a wide range of population and evolutionary processes. As adult godwits are highly philopatric, the initial choice of winter habitat by juveniles will be critical in determining future survival, timing of migration and breeding success.  相似文献   

10.
Identifying the factors that control population dynamics in migratory animals has been constrained by our inability to track individuals throughout the annual cycle. Using stable carbon isotopes, we show that the reproductive success of a long-distance migratory bird is influenced by the quality of habitat located thousands of kilometres away on tropical wintering grounds. For male American redstarts (Setophaga ruticilla), winter habitat quality influenced arrival date on the breeding grounds, which in turn affected key variables associated with reproduction, including the number of young fledged. Based on a winter-habitat model, females occupying high-quality winter habitat were predicted to produce more than two additional young and to fledge offspring up to a month earlier compared with females wintering in poor-quality habitat. Differences of this magnitude are highly important considering redstarts are single brooded, lay clutches of only three to five eggs and spend only two-and-a-half months on the breeding grounds. Results from this study indicate the importance of understanding how periods of the annual cycle interact for migratory animals. Continued loss of tropical wintering habitat could have negative effects on migratory populations in the following breeding season, minimizing density-dependent effects on the breeding grounds and leading to further population declines. If conservation efforts are to be successful, strategies must incorporate measures to protect all the habitats used during the entire annual cycle of migratory animals.  相似文献   

11.
Where there is seasonal disparity among opportunities, the season with those in shortest supply is most likely to limit populations. Among migrant birds that travel between different breeding and winter ranges, any of breeding, migratory or winter conditions could exclusively constitute such population‐limiting factors. In both the New and Old Worlds, landmass is disproportionately concentrated in temperate latitudes. In the Americas, most passerine bird species that breed in the USA and Canada spend the winter further south, commonly in parts of the tropics where landmass is significantly less. Using a sample of 89 migratory species (eight passerine families) that breed in eastern North America, I considered patterns of geographic breeding range size, winter range size and winter distribution. Winter range size is usually smaller than breeding range size (84 of 89 species), often substantially so (minimum 8%, mean 52%). Wintering latitude explains significant variation in both breeding range size and winter range size, as well as in winter range size relative to breeding range size. In particular, all three measures vary latitudinally in patterns similar to latitudinal variation in landmass. These patterns collectively suggest that the reduction in landmass in the latitudes of Central America and the Caribbean is a limiting factor for migrant bird populations, adding to other research concluding that winter conditions sometimes prevail over breeding conditions in the limitation of populations. Hectare for hectare, habitat destruction in the tropics is likely to have the greater impact on the welfare of passerine populations breeding in North America.  相似文献   

12.
Understanding non‐breeding season movements and identifying wintering areas of different populations of migratory birds is important for establishing patterns of migratory connectivity over the annual cycle. We analyzed archival solar geolocation (N = 5) and global positioning data (= 1) to investigate migration routes, stopover sites, and wintering areas of a western‐most breeding population of Veeries (Catharus fuscescens) in the Pemberton Valley, British Columbia, Canada. Geolocation data were analyzed using a Bayesian state‐space model to improve likely position estimates. We compared our results with those from a Veery population located ~250 km east across a mountain chain in the Okanagan Valley, British Columbia, and with an eastern population in Delaware, U.S.A. Migrating Veeries from the Pemberton Valley used an eastern trajectory through the Rocky Mountains to the Great Plains to join a central flyway during fall and spring migration, a route similar to that used by Veeries breeding in the Okanagan Valley. However, wintering destinations of Pemberton Valley birds were more varied, with inter‐individual wintering distances ~1000 km greater than birds from the Okanagan Valley population and ~500 km from the previously known winter range of Veeries. The observed eastern migration path likely follows an ancestral route that evolved following the most recent glacial retreat. Consistent with patterns observed from the Okanagan and Delaware populations, Veeries from the Pemberton Valley undertook an intra‐tropical migration on the wintering grounds, but this winter movement differed from those of previously studied populations. Such winter movements may thus be idiosyncratic or show coarse population associations. Intra‐wintering‐ground movements likely occur either in response to seasonal changes in habitat suitability or as a means of optimizing pre‐migratory fueling prior to long‐distance spring movements to North America.  相似文献   

13.
Understanding why populations of some migratory species show a directional change over time, i.e. increase or decrease, while others do not, remains a challenge for ecological research. One possible explanation is that species with smaller non‐breeding ranges may have more pronounced directional population trends, and their populations are thus more sensitive to the variation in environmental conditions in their non‐breeding quarters. According to the serial residency hypothesis, this sensitivity should lead to higher magnitudes (i.e. absolute values) of population trends for species with smaller non‐breeding ranges, with the direction of trend being either positive or negative depending on the nature of the environmental change. We tested this hypothesis using population trends over 2001–2012 for 36 sub‐Saharan migratory passerine birds breeding in Europe. Namely, we related the magnitude of the species' population trends to the size of their sub‐Saharan non‐breeding grounds, whilst controlling for factors including number of migration routes, non‐breeding habitat niche and wetness, breeding habitat type and life‐history strategy. The magnitude of species' population trends grew with decreasing absolute size of sub‐Saharan non‐breeding ranges, and this result remained significant when non‐breeding range size was expressed relative to the size of the breeding range. After repeating the analysis with the trend direction, the relationship with the non‐breeding range size disappeared, indicating that both population decreases and increases are frequent amongst species with small non‐breeding range sizes. Therefore, species with small non‐breeding ranges are at a higher risk of population decline due to adverse factors such as habitat loss or climatic extremes, but their populations are also more likely to increase when suitable conditions appear. As non‐breeding ranges may originate from stochasticity of non‐breeding site selection in naive birds (‘serial‐residency’ hypothesis), it is crucial to maintain a network of stable and resilient habitats over large areas of birds’ non‐breeding quarters.  相似文献   

14.
Birds experience a sequence of critical events during their life cycle, and past events can subsequently determine future performance via carry‐over effects. Events during the non‐breeding season may influence breeding season phenology or productivity. Less is understood about how events during the breeding season affect individuals subsequently in their life cycle. Using stable carbon isotopes, we examined carry‐over effects throughout the annual cycle of prairie warblers (Setophaga discolor), a declining Nearctic–Neotropical migratory passerine bird. In drier winters, juvenile males that hatched earlier at our study site in Massachusetts, USA, occupied wetter, better‐quality winter habitat in the Caribbean, as indicated by depleted carbon isotope signatures. For juveniles that were sampled again as adults, repeatability in isotope signatures indicated similar winter habitat occupancy across years. Thus, hatching date of juvenile males appears to influence lifetime winter habitat occupancy. For adult males, reproductive success did not carry over to influence winter habitat occupancy. We did not find temporally consecutive “domino” effects across the annual cycle (breeding to wintering to breeding) or interseasonal, intergenerational effects. Our finding that a male''s hatching date can have a lasting effect on winter habitat occupancy represents an important contribution to our understanding of seasonal interactions in migratory birds.  相似文献   

15.
Populations of migratory birds have undergone marked declines, although the causes and mechanisms remain unknown. Because environmental effects on population dynamics are mediated by the effects of ecological factors on individuals, understanding changes in individual phenotypes in response to ecological conditions is key to understanding population trends. We show that breeding individuals of a declining population of trans-Saharan migratory barn swallows, Hirundo rustica, were affected by environmental conditions, as estimated from the normalized difference vegetation index (NDVI), reflecting primary production, in their winter quarters. The breeding dates of the same individuals in consecutive breeding seasons were advanced and clutch sizes were larger after winters with high NDVI in the winter quarters. Feather moult was also affected by winter conditions, with consequences for male sexual attractiveness. Length of tail ornament was positively correlated with NDVI during the previous winter, and males with large tail ornaments reproduced earlier and had larger clutches. The mean annual breeding date of the population was earlier and breeding success was increased after favourable winters, but this result was mainly determined by a single winter with very low NDVI. Thus, ecological conditions in Africa influence individual performance and productivity in a barn swallow population.  相似文献   

16.
Carry-over effects and habitat quality in migratory populations   总被引:5,自引:0,他引:5  
D. Ryan Norris 《Oikos》2005,109(1):178-186
Determining the factors that influence migratory population abundance has been constrained by the inability to connect events in different periods of the annual cycle. Carry-over effects are events that occur in one season but influence individual success the following season and recent empirical evidence suggests that they may play an important role in migratory population dynamics. Using a long distance migratory shorebird as an example, I incorporate carry-over effects and changes in the relative amount of habitat quality into a density-dependent equilibrium population model. The model uses the example where the quality of habitat on the wintering grounds (nonbreeding season) influences breeding output the following summer (breeding season). Carry-over effects, however, may be manifested in a number of other ways that could influence population dynamics. In the simulations, population declines occur when habitat is lost on the wintering grounds. However, results show that carry-over effects can magnify these declines when a disproportionate amount of high quality habitat is lost the previous winter. Simulations also show that carry-over effects can have a relative, positive impact on population size when the majority of habitat that is lost in the previous season is low quality. In this case, the carry-over interacts with density-dependence the following season producing an additive and positive effect, buffering the population from severe declines. To predict changes in population size of migratory animals, it will be important to determine (i) which demographic factors in which season produce strong carry-over effects and, (ii) not just the amount, but the relative quality of habitat that is lost. If carry-over effects are significant, they could potentially mitigate 'seasonal compensation effects' from density-dependence, leading to exacerbated population declines.  相似文献   

17.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

18.
1. Patterns of distribution of breeding austral migrant tyrant-flycatchers in temperate South America were quantified and analysed in conjunction with a variety of ecological, biogeographical and climatic variables.
2. The pattern of proportion of migratory to total breeding tyrannids was most strongly associated with latitude and two temperature variables, mean temperature of the coldest month and relative annual range of temperature.
3. The strong associations of latitude and temperature with percentage of migrants are consistent with the results of most similar investigations of the breeding distributions of migratory birds, both for migrants breeding in North America and in Europe, but contradict the hypothesis that habitat complexity plays a major role in structuring the proportion of migrants in communities of breeding birds.
4. The consistency of results among studies of migrants on different continents suggests that temperature and latitude, presumably a surrogate for one or more climatic variables, are globally significant factors in the breeding distributions of migratory birds.
5. The results for austral migrant flycatchers are consistent with the hypothesis that the prevalence of migration at any particular locality is ultimately dependent on the abundance of resources in the breeding season and the severity of the winter season, or on the difference in resource levels between summer and winter.  相似文献   

19.
Winter habitat quality can influence breeding phenology and reproductive success of migratory birds. Using stable isotope ratios of carbon (δ13C) from bird claws and red blood cells collected in Massachusetts, USA, we assessed if winter habitat occupancy carried over to affect prairie warbler Setophaga discolor breeding arrival dates, body condition upon arrival, pairing success, first‐egg dates and reproductive success. In two of three years (in 2011 and 2012, but not in 2013), after‐second‐year (ASY) males wintering in drier habitat, as indicated by enriched δ13C values, arrived later on the breeding grounds. Based on the North Atlantic Oscillation index, there was likely less rainfall in the Caribbean wintering grounds during the winters of 2011 and 2012 compared to the winter of 2013, suggesting increased winter rainfall in 2013 may have diminished the influence of winter habitat occupancy on arrival date. We did not find any effects of winter habitat on breeding season phenomena for second‐year (SY) males or females, but our sample sizes for these age/sex classes were relatively low. Although winter habitat quality influenced arrival dates of ASY males, there was no evidence that it affected reproductive performance, perhaps because of high rates of nest depredation in our system. Our study adds to a growing body of research that shows the influence of carry‐over effects can differ among species and within populations, and also can be modulated by other environmental conditions. This information enriches our understanding of the role of carry‐over effects in population limitation for migratory birds.  相似文献   

20.
Where there is seasonal disparity among opportunities, the season with those in shortest supply is most likely to limit populations. Among migrant birds that travel between different breeding and winter ranges, any of breeding, migratory or winter conditions could exclusively constitute such population-limiting factors. In both the New and Old Worlds, landmass is disproportionately concentrated in temperate latitudes. In the Americas, most passerine bird species that breed in the USA and Canada spend the winter further south, commonly in parts of the tropics where landmass is significantly less. Using a sample of 89 migratory species (eight passerine families) that breed in eastern North America, I considered patterns of geographic breeding range size, winter range size and winter distribution. Winter range size is usually smaller than breeding range size (84 of 89 species), often substantially so (minimum 8%, mean 52%). Wintering latitude explains significant variation in both breeding range size and winter range size, as well as in winter range size relative to breeding range size. In particular, all three measures vary latitudinally in patterns similar to latitudinal variation in landmass. These patterns collectively suggest that the reduction in landmass in the latitudes of Central America and the Caribbean is a limiting factor for migrant bird populations, adding to other research concluding that winter conditions sometimes prevail over breeding conditions in the limitation of populations. Hectare for hectare, habitat destruction in the tropics is likely to have the greater impact on the welfare of passerine populations breeding in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号