首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
The mechanisms that lead to mitochondrial damage under oxidative stress conditions were examined in synaptosomes treated with ascorbate/iron. A loss of membrane integrity, evaluated by electron microscopy and by LDH leakage, was observed in peroxidized synaptosomes and it was prevented by pre-incubation with vitamin E (150 μM) and idebenone (50 μM). ATP levels decreased, in synaptosomes exposed to ascorbate/iron, as compared to controls. NADH-ubiquinone oxidoreductase (Cx I) and cytochrome c oxidase (Cx IV) activities were unchanged after ascorbate/iron treatment, whereas succinate-ubiquinone oxidoreductase (Cx II), ubiquinol cytochrome c reductase (Cx III) and ATP-synthase (Cx V) activities were reduced by 55%, 40%, and 55%, respectively. The decrease of complex II and ATP-synthase activities was prevented by reduced glutathione (GSH), whereas the other antioxidants tested (vitamin E and idebenone) were ineffective. However, vitamin E, idebenone and GSH prevented the reduction of complex III activity observed in synaptosomes treated with ascorbate/iron. GSH protective effect suggests that the oxidation of protein SH-groups is involved in the inhibition of complexes II, III and V activity, whereas vitamin E and idebenone protection suggests that membrane lipid peroxidation is also involved in the reduction of complex III activity. These results may indicate that the inhibition of the mitochondrial respiratory chain enzymatic complexes, that are differentially affected by oxidative stress, can be recovered by specific antioxidants.  相似文献   

2.
Increases in free radicals are believed to play a central role in the development of pulmonary ischemia/reperfusion (I-R) injury, leading to microvascular leakage and deterioration of pulmonary surfactant. Continued ventilation during ischemia offers significant protection against I-R injury, but the impact of alveolar oxygen supply both on lung injury and on radical generation is still unclear. We investigated the influence of hyperoxic (95% O2) and anoxic (0% O2) ventilation during ischemia on alveolar antioxidant status and surfactant properties in isolated rabbit lungs. Normoxic and hyperoxic ventilated, buffer-perfused lungs (n = 5 or 6) and native lungs (n = 6) served as controls. As compared with controls, biophysical and biochemical surfactant properties were not altered in anoxic as well as hyperoxic ventilated ischemic (2, 3, and 4 h) lungs. Assessment of several antioxidants (reduced glutathione (GSH), alpha-tocopherol (vitamin E), retinol (vitamin A), ascorbic acid (vitamin C), uric acid, and plasmalogens (1-O-alkenyl-2-acyl-phospholipids)) in bronchoalveolar lavage fluid (BALF) revealed a significant increase in antioxidant compounds under anoxic and hyperoxic ventilation, with maximum levels occuring after 3 h of ischemia. For example, GSH increased to 5.1 +/- 0.8 microM (mean +/- SE, p <.001) after 3 h of anoxic ventilated ischemia and to 2.7 +/- 0.2 microM (p <.01) after hyperoxic ventilated ischemia compared with native controls (1.3 +/- 0.2 microM), but did not significantly change under anoxic and hyperoxic ventilation alone. In parallel, under ischemic conditions, oxidized glutathione (GSSG) increased during hyperoxic (3 h: 0.81 +/- 0.04 microM, p <.001), but remained unchanged during anoxic (3 h: 0.31 +/- 0.04 microM) ventilation compared with native controls (0.22 +/- 0.02 microM), whereas F2-isoprostanes were elevated under both hyperoxic (3 h: 63 +/- 15 pM, p <.01) and anoxic (3 h: 50 +/- 9 pM, p <.01) ventilation compared with native controls (16 +/- 4 pM). We conclude that oxidative stress is increased in the lung alveolar lining layer during ischemia, during both anoxic and hyperoxic ventilation. This is paralleled by an increase rather than a decrease in alveolar antioxidant levels, suggested to reflect an adaptive response to oxidative stress during ischemia.  相似文献   

3.
We have investigated the effects of a smokeless tobacco extract (STE) on lipid peroxidation, cytochrome c reduction, DNA fragmentation and apoptotic cell death in normal human oral keratinocyte cells, and assessed the protective abilities of selected antioxidants. The cells, isolated and cultured from human oral tissues, were treated with STE (0-300 microl;g/ml) for 24 h. Superoxide anion production was determined by cytochrome c reductase. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, whereas apoptotic cell death was assessed by flow cytometry. STE-induced fragmentation of genomic DNA was also determined by gel electrophoresis. The comparative protective abilities of vitamin C (75 microM), vitamin E (75 microM), a combination of vitamins C & E (75 microM each), and a novel grape seed proanthocyanidin (IH636) extract (GSPE) (100 microg/ml) against STE induced oxidative stress and tissue damage were also determined. Following treatment of the cells with 300 microg STE/ml 1.5-7.6-fold increases in lipid peroxidation, cytochrome c reduction and DNA fragmentation were observed. The addition of the antioxidants to cells treated with STE provided 10-54% decreases in these parameters. Approximately 9, 29, and 35% increases in apoptotic cell death were observed following treatment with 100, 200, and 300 microg STE/ml, respectively, and 51-85% decreases in apoptotic cell death were observed with the antioxidants. The results demonstrate that STE produces oxidative tissue damage and apoptosis, which can be attenuated by antioxidants including vitamin C, vitamin E, a combination of vitamins C plus E and GSPE. GSPE exhibited better protection against STE than vitamins C and E, singly and in combination.  相似文献   

4.
Comparison of the protective effect of three antioxidants (from three different chemical classes) against cell injury due to LDL oxidation, allowed us to clearly discriminate between two different lines of defence. The ultraviolet-induced lipid peroxidation of LDL was strongly inhibited by 10 mumol/l catechin and 25 mumol/l probucol, but only poorly by 100 mumol/l vitamin E. The ultraviolet-treated LDL protected by catechin or probucol (i.e. LDL irradiated by ultraviolet in the presence of effective concentrations of antioxidants inhibiting the lipid peroxidation) were much less 'cytotoxic' than unprotected ultraviolet-treated LDL. In contrast, LDL treated by ultraviolet in the presence of 100 mumol/l vitamin E were 'cytotoxic' similarly to unprotected LDL. The level of 'cytotoxicity' of LDL treated by ultraviolet in the presence of antioxidants (protected ultraviolet-treated LDL) was well correlated with their content in lipid peroxidation markers. Therefore these markers can be useful for predicting the 'cytotoxicity' of oxidized LDL and subsequently the protective effect of the tested antioxidants. The 'cytotoxicity' of unprotected ultraviolet-treated LDL (i.e. LDL irradiated by ultraviolet in the absence of exogenous antioxidant) can be effectively blocked by preincubation of the cells with antioxidants. Catechin (10 mumol/l) and vitamin E (100 mumol/l) are very effective cytoprotective agents, whereas probucol (up to 50 mumol/l) was completely ineffective under these experimental conditions. The cytoprotective effect of vitamin E was associated to a complete inhibition of the cellular TBARS formation induced by ultraviolet-treated LDL, whereas the cytoprotective effect of catechin was relatively independent on the TBARS inhibition. All these results showed that: (1) probucol (25 mumol/l) is very effective to prevent lipid peroxidation of LDL and their subsequent 'cytotoxicity', but it cannot protect cells against the 'cytotoxicity' of previously oxidized LDL; (2) vitamin E (100 mumol/l) prevents poorly the ultraviolet-induced lipid peroxidation of LDL, but is able to block simultaneously the cellular oxidative stress and the 'cytotoxicity' induced by previously oxidized LDL; and (3) catechin (10 mumol/l) exhibited two types of protective effects: it inhibits the lipid peroxidation of LDL (and their subsequent 'cytotoxicity') and very effectively protects the cells against 'toxicity' of previously oxidized LDL (with only little inhibition of the cellular oxidative stress).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Abstract: The aim of this study was to elucidate the mechanisms by which retinal cells release endogenous amino acids in response to ascorbate/Fe2+-induced oxidative stress, as compared with chemical hypoxia or ischemia. In the absence of stimulation, oxidative stress increased the release of aspartate, glutamate, taurine, and GABA only when Ca2+ was present. Under hypoxia or ischemia, the release of aspartate, glutamate, glycine, alanine, taurine, and GABA increased mainly by a Ca2+-independent mechanism. The increased release observed in N -methyl- d -glucamine+ medium suggested the reversal of the Na+-dependent amino acid transporters. Upon oxidative stress, the release of aspartate, glutamate, and GABA, occurring through the reversal of the Na+-dependent transporters, was reduced by about 30%, although the release of taurine was enhanced. An increased release of [3H]arachidonic acid and free radicals seems to affect the Na+-dependent transporters for glutamate and GABA in oxidized cells. All cell treatments increased [Ca2+]i (1.5 to twofold), although no differences were observed in membrane depolarization. The energy charge of cells submitted to hypoxia or oxidative stress was not changed. However, ischemia highly potentiated the reduction of the energy charge, as compared with hypoglycemia or hypoxia alone. The present work is important for understanding the mechanisms of amino acid release that occur in vivo upon oxidative stress, hypoxia, or ischemia, frequently associated with the impairment of energy metabolism.  相似文献   

6.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS. In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation of the compensatory role of some exogenous micronutrients against oxidative stress Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body γ-irradiation (6.5 Gy). The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary mechanism.  相似文献   

7.
Friedreich ataxia (FRDA) is a common form of ataxia caused by decreased expression of the mitochondrial protein frataxin. Oxidative damage of mitochondria is thought to play a key role in the pathogenesis of the disease. Therefore, a possible therapeutic strategy should be directed to an antioxidant protection against mitochondrial damage. Indeed, treatment of FRDA patients with the antioxidant idebenone has been shown to improve neurological functions. The yeast frataxin knock-out model of the disease shows mitochondrial iron accumulation, iron-sulfur cluster defects and high sensitivity to oxidative stress. By flow cytometry analysis we studied reactive oxygen species (ROS) production of yeast frataxin mutant cells treated with two antioxidants, N-acetyl-L-cysteine and a mitochondrially-targeted analog of vitamin E, confirming that mitochondria are the main site of ROS production in this model. Furthermore we found a significant reduction of ROS production and a decrease in the mitochondrial mass in mutant cells treated with rapamycin, an inhibitor of TOR kinases, most likely due to autophagy of damaged mitochondria.  相似文献   

8.
Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti‐oxidative stress and anti‐inflammatory properties of the active form of vitamin D3, 1,α, 25‐dihydroxyvitamin D3, in a mouse cone cell line, 661W. Mouse cone cells were treated with H2O2 or a mixture of H2O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti‐oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2O2. H2O2 treatment in 661W cells can significantly down‐regulate the expression of antioxidant genes and up‐regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD.  相似文献   

9.
Behl C  Moosmann B 《Biological chemistry》2002,383(3-4):521-536
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.  相似文献   

10.
This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150–600 J m−2 UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.  相似文献   

11.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

12.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

13.
Oxidative stress plays an important role in the pathological processes of ischemic brain damage. Many antioxidants have been shown to protect against cerebral ischemia injury by inhibiting oxidative stress both in vitro and in vivo. 20-Hydroxyecdysone (20E), an ecdysteroid hormone, exhibits antioxidative effects. For the work described in this paper, we used an in vitro oxidative damage model and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of 20E and the mechanisms related to these effects. Treatment of cells with H2O2 led to neuronal injury, intracellular ROS/RNS generation, mitochondrial membrane potential dissipation, cellular antioxidant potential descent, an increase in malondialdehyde (MDA) and an elevation of intracellular [Ca2+], all of which were markedly attenuated by 20E. Inhibition of the activation of the ASK1-MKK4/7-JNK stress signaling pathway and cleaved caspase-3 induced by oxidative stress were involved in the neuroprotection afforded by 20E. In addition, 20E reduced the expression of iNOS protein by inhibition of NF-κB activation. The neuroprotective effect of 20E was also confirmed in vivo. 20E significantly decreased infarct volume and the neurological deficit score, restored antioxidant potential and inhibited the increase in MDA and TUNEL-positive and cleaved caspase-3-positive cells in the cerebral cortex in MCAO rats. Together, these results support that 20E protects against cerebral ischemia injury by inhibiting ROS/RNS production and modulating oxidative stress-induced signal transduction pathways.  相似文献   

14.
The maintenance of the redox-homeostasis is an essential task of antioxidants. Reactive oxygen species (ROS) formed during oxidative stress can potentially damage the normal cellular functions and support pathological processes like atherosclerosis in vessels or malignant growth in other tissues, but also the aging process. However, recent findings link ROS also to cell survival and/or proliferation, which revolutionises the age-old dogmatic view of ROS being exclusively involved in cell damage and death. Low concentrations of hydrogenperoxide e.g. are involved in cell signaling and can activate mitogen-activated kinases (MAPK) to initiate cell growth. Nutritional antioxidants like vitamin C or E can promote endothelial cell growth, but can also inhibit growth of muscle cells, and influence MAPK. Thus, keeping the redox-homeostasis in a steady state especially in the context of tissue regeneration appears to be more important than previously known and seems to be a controlled synergistic action of antioxidants and ROS. The present review summarizes the properties and functions of ROS and nutritional antioxidants like the vitamins C and E, and polyphenols in redox-homeostasis. Their relevance in the treatment of various diseases is discussed in the context of a multitarget therapy with nutraceuticals and phytotherapeutic drugs.  相似文献   

15.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   

16.
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.  相似文献   

17.
The mitochondria-targeted drugs mitoquinone (Mito-Q) and mitovitamin E (MitoVit-E) are a new class of antioxidants containing the triphenylphosphonium cation moiety that facilitates drug accumulation in mitochondria. In this study, Mito-Q (ubiquinone attached to a triphenylphosphonium cation) and MitoVit-E (vitamin E attached to a triphenylphosphonium cation) were used. The aim of this study was to test the hypothesis that mitochondria-targeted antioxidants inhibit peroxide-induced oxidative stress and apoptosis in bovine aortic endothelial cells (BAEC) through enhanced scavenging of mitochondrial reactive oxygen species, thereby blocking reactive oxygen species-induced transferrin receptor (TfR)-mediated iron uptake into mitochondria. Glucose/glucose oxidase-induced oxidative stress in BAECs was monitored by oxidation of dichlorodihydrofluorescein that was catalyzed by both intracellular H(2)O(2) and transferrin iron transported into cells. Pretreatment of BAECs with Mito-Q (1 microM) and MitoVit-E (1 microM) but not untargeted antioxidants (e.g. vitamin E) significantly abrogated H(2)O(2)- and lipid peroxide-induced 2',7'-dichlorofluorescein fluorescence and protein oxidation. Mitochondria-targeted antioxidants inhibit cytochrome c release, caspase-3 activation, and DNA fragmentation. Mito-Q and MitoVit-E inhibited H(2)O(2)- and lipid peroxide-induced inactivation of complex I and aconitase, TfR overexpression, and mitochondrial uptake of (55)Fe, while restoring the mitochondrial membrane potential and proteasomal activity. We conclude that Mito-Q or MitoVit-E supplementation of endothelial cells mitigates peroxide-mediated oxidant stress and maintains proteasomal function, resulting in the overall inhibition of TfR-dependent iron uptake and apoptosis.  相似文献   

18.
Retinal ischemia plays a critical role in multiple vision‐threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF‐E2‐related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia‐reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild‐type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild‐type retinal ganglion cells, demonstrating the cell‐intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA‐mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO‐Im (2‐Cyano‐3,12‐dioxooleana‐1,9‐dien‐28‐imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild‐type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy.

  相似文献   


19.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

20.
The photoprotective potential of the dietary antioxidants vitamin C, vitamin E, lycopene, beta-carotene, and the rosemary polyphenol, carnosic acid, was tested in human dermal fibroblasts exposed to ultraviolet-A (UVA) light. The carotenoids were prepared in special nanoparticle formulations together with vitamin C and/or vitamin E. Nanoparticle formulations, in contrast to dimethylsulphoxide, stablized lycopene in the cell culture medium and allowed efficient cellular uptake. The presence of vitamin E in the formulation further increased the stability and cellular uptake of lycopene. UVA irradiation of the human skin fibroblasts led to a 10-15-fold rise in metalloproteinase 1 (MMP-1) mRNA. This rise was suppressed in the presence of low microM concentrations of vitamin E, vitamin C, or carnosic acid but not with beta-carotene or lycopene. Indeed, in the presence of 0.5-1.0 microM beta-carotene or lycopene, the UVA-induced MMP-1 mRNA was further increased by 1.5-2-fold. This increase was totally suppressed when vitamin E was included in the nanoparticle formulation. Heme-oxygenase 1 (HO-1) mRNA expression was strongly induced by UVA irradiation but none of the antioxidants inhibited this effect at the concentrations used in this study. Indeed, beta-carotene or lycopene (0.5-1.0 microM) led to a further 1.5-fold rise in the UVA-induced HO-1 mRNA levels. In conclusion, vitamin C, vitamin E, and carnosic acid showed photoprotective potential. Lycopene and beta-carotene did not protect on their own but in the presence of vitamin E, their stability in culture was improved and the rise in MMP-1 mRNA expression was suppressed, suggesting a requirement for antioxidant protection of the carotenoids against formation of oxidative derivatives that can influence the cellular and molecular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号