首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
胃癌癌旁肠化上皮酶组织化学研究   总被引:1,自引:0,他引:1  
本文应用酶组化方法对60例胃癌癌旁粘膜中47例肠化上皮(78.3%)的破性磷酸酶(ALP)、酸性磷酸酶(ACP)、胞嘧啶单核苷酸酶(CMP)、葡萄糖-6-磷酸酶(G-6-pase)、焦磷酸硫胺素酶(TPPase)、5-核苷酸酶(SNase)、三磷酸腺苷酶(Mg2+-ATPase,Ca2+-ATPase)和细胞色素氧化酶(CCO)等九种细胞器标志酶进行了定位观察。结果发现肠化上皮吸收细胞上述酶活性均较强,且分布具有极性,杯状细胞酶反应较弱,主要位于细胞基底部。癌旁粘膜肠化阳性率为78.3%,其中ALP阳性的酶完全型肠化和ALP阴性的酶不完全型肠化分别占53.2%,46.8%,两者出现率相近。酶完全型肠化ALP阳性率在胃分化型癌及未分化型癌瘤旁分别占69.2%和33.3%。ALP阳性率在胃分化型及未分化型癌组织内分别为35.5%和0%。提示肠化上皮具有与肠上皮相似的代谢特征,酶完全型肠化和酶不完全型肠化可能是肠化的二种不同的形式,在致癌环境下,二者都有可能转变成癌,其中酶完全型肠化与分化型癌的关系较为密切。  相似文献   

2.
蛇胸腺胚胎发育的组织学研究   总被引:1,自引:0,他引:1  
该文应用光镜、电镜和细胞计数技术对胚胎发育期虎斑颈槽蛇胸腺的发育分化进行了研究。在胚胎发育11期,胸腺原基内出现前淋巴细胞。从胚胎发育12期至出生前(16期),淋巴细胞不断增殖分化,小淋巴细胞逐渐增多,而淋巴母细胞和中淋巴细胞逐渐减少。胸腺皮质和髓质形成于16期。巨噬细胞以及肌样细胞和胸腺APUD细胞分别形成于胚胎发育14期和15期,随后数量有所增加,分别分布于胸腺皮质和髓质。  相似文献   

3.
本文运用荧光原位杂交(FISH)技术结合淋巴细胞免疫表型分型方法,检测了血管免疫母细胞淋巴结病(AILD)中含有特征性+3细胞的免疫表型特征、细胞先经CD4和CD8免疫分型,再用3号染色体着丝粒异性的DNA探针作原位杂交。结果发现含有+3的细胞CD4和CD8阳性,即外周辅助性T细胞和抑制性T细胞均含有+3,说咀+3的畸变发生于胸腺中处于中期分化阶段的普通胸腺细胞,从而推测AILD可能起源于胸腺幼稚的T细胞。  相似文献   

4.
人体胸腺和周围淋巴器官内T细胞亚群和NK细胞分布的研究   总被引:1,自引:0,他引:1  
本文用多种T细胞和NK细胞单抗和免疫组织化学的ABC技术,在冰冻切片上对人扁桃体、淋巴结、牌和胸腺内T细胞亚群和NK细胞的分布进行了检测。结果显示,CD5、CD8、CD4、CD3和AIG3阳性细胞主要分布在扁桃体,淋巴结的副皮质区、脾的动脉周围淋巴鞘和胸腺,但各种抗体的反应强度不同。从各种T细胞工群的染色强度和形状看,胸腺髓质部的胸腺细胞相当于周围淋巴器官内的胸腺依赖区。胸腺内T细胞在分化过程中,质膜上的抗原也有相应变化。NK细胞主要分布在淋巴小结的生发中心,淋巴结和扁桃体的副皮质区,脾的红髓以及胸腺的筋质部。这些不同的分布,说明NK细胞不仅与淋巴小结的活动有关,可能还参与机体的免疫调节功能。  相似文献   

5.
地塞米松(Dex)、噻庚啶(Cyp) 和山莨菪碱(Ani) 对脂多糖(LPS) 诱导的大鼠肝脏TNFα表达的影响。Wistar大鼠40 只, 静脉注射LPS(EcoliO111B4 5m g/kg) 后, 立即静脉给予Dex 5m g/kg、Cyp5m g/kg 或Am i10m g/kg,于LPS攻击后2h 取动物的肝脏,APAAP法进行TNFα免疫组织化学研究,North-ern 杂交分析TNFαm RNA 表达水平。结果发现LPS攻击后2h, 肝脏TNFαm RNA 表达水平显著增高, 肝脏枯否氏细胞胞浆内有大量的TNFα红染颗粒。Dex、Cyp 或Ani均能显著降低大鼠肝脏TNFαm RNA 水平和TNFα含量。结果表明Dex、Cyp 和Ani均显著抑制LPS诱导的TNFα基因表达, 可能有抗感染性休克作用。  相似文献   

6.
Tenascin-C(TN-C)是由单基因编码的细胞外基质糖蛋白分子.在动物胚胎发育多种组织中表达,有复杂的分子结构.TN-C在动物发育尤其是神经系统发育过程中与细胞的分裂、分化和迁移有关,并参与外周神经系统的再生.TN—C通过与靶细胞受体相互作用发挥其功能,目前发现的TN-C受体有Integrin的若干亚型和AnnexinⅡ等.本文将对TN—C的结构、生物学功能及其受体研究进展简述.  相似文献   

7.
Tenascin-C(TN-C)是由单基因编码的细胞外基质糖蛋白分子,在动物胚胎发育多种组织中表达,有复杂的分子结构,TN-C在动物发育尤其是神经系统发育过程中与细胞的分裂,分化和迁移有关,并参与外周神经系统的再生。TN-C通过与靶细胞受体相互作用发挥其功能,目前发现的TN-C受体有Integrin的若干亚型和AnnexinⅡ等,本文将对TN-C的结构,生物学功能及其受体研究进展简述。  相似文献   

8.
胸腺是细胞分化发育的场所,源于骨髓的前T细胞。在以胸腺上皮细胞为主体的基质细胞作用下,增殖、分化、成为成熟T细胞,迁移至外周。胸腺基质细胞通过细胞与细胞之间的直接接触和分泌细胞因子影响细胞分化发育的各个阶段。本文探讨了人胸腺上皮细胞培养上清液(TECSN)对鼠胸腺细胞、85、Be13、HDMar、Molt4、Reh以及Jurkat细胞株增殖的影响。取人胸腺组织,用0.15%的胰酶消化组织块后,将其接种到培养瓶中进行培养,收集上清液。将TECSN加到鼠胸腺细胞悬液中,2h后加3HTdR,观察鼠胸腺细胞自发性掺入3HTdR有无改变。同时将TECSN+ConA加入鼠胸腺细胞悬液中培养48h,收获细胞前18h加入3HTdR,测定CPM值。此外,TECSN加入85细胞株及其它细胞株悬液中,观察TECSN对这些细胞株增殖的影响。上述各实验均设有对照组(Tab.1)。结果表明:TECSN本身能增强鼠胸腺细胞3HTdR自发掺入,其3HTdRCPM值明显大于对照组(Fig.1)。TECSN单独使用不影响胸腺细胞增殖,ConA单独作用能促进鼠胸腺细胞增殖反应,而TECSN与ConA共同使用,胸腺  相似文献   

9.
本文报导国人睾丸、附睾和输精管的NSE,AChE,ChE,ALP,ACP,5'-Nase,G-6-Pase,β-GA,β-GR,AP-M,ATPase和TPPase水解酶的组织化学活性、结果显示:睾丸曲细精管的ALP,5'-Nase和ATPase;睾丸间质细胞的NSE,ALP,ATPase和ACP;睾丸间质中的NSE,ALP和AT-Pasc;睾丸输出小管和附睾管上皮的NSE,ALP,ACP,5’-Nase,β-GA,β-GR,ATPase和Tppase;附睾头部间质中的NSE,AChE,ALP,和ATPase;输精管上皮细胞的ATPase的酶活性均呈强阳性或极强阳性。说明人类睾丸、附睾和输精管含有丰富的水解酶,尤其是附睾头部的输出小管、附睾管和头质均含有种类多活性高的水解酶,在精子的功能成熟上起了重要的作用,提示其可能作为生育与不育诊治中的重要指标。  相似文献   

10.
本工作采用分离培养家兔肺内小动脉平滑肌细胞(PASMCs),观察了外源性血小板活化因子(plateletactivatingfactor,PAF)、BN52021(PAF受体拮抗剂)、吲哚美辛、维拉帕米对PASMCs产生血栓素A_2(TxA_2)、前列环素(PGI_2)及对细胞膜Ca~(2+)-ATPase活力的影响。结果表明:(1)基础状态下PASMCs存在花生四烯酸(AA)代谢。(2)外源性PAF通过受体后途径激活环加氧酶促进AA代谢致TXA_2及PGI-2增加,TXA_2/PGI_2比值无明显变化。(3)外源性PAF能直接抑制Ca~(2+)-ATPase活力。(4)维拉帕米可逆转PAF抑制PASMCs膜Ca~(2+)-ATPase活力的效应。  相似文献   

11.
Alkaline phosphatases (ALPase) (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.1) are implicated in many biologic phenomena including ossification and differentiation of human neutrophils and choriocarcinoma cells. Another trait, demonstrated by microinjection into Xenopus oocytes, is their ability to block the first mitotic division. Previous work in our laboratory has established that ALPase is also present on murine B lymphocytes activated by either polyclonal mitogens or Th cells. We have now characterized the ALPase present on murine B cells as belonging to the liver-bone-kidney isoenzyme and found it to be implicated in B cell differentiation into antibody secretion. Thus, B cell proliferative responses, elicited either by high concentrations of rabbit anti-IgM antibodies or by LPS in the presence of PMA, are characterized by the lack of both antibody secretion and expression of ALPase activity. In contrast, B cells stimulated to differentiate into Ig-secreting cells by B cell differentiation factors, nearly in the absence of a proliferative response, express high levels of ALPase activity, as did those that were LPS-stimulated. These data showing the association of the ALPase expression with the process of B cell differentiation into antibody-secreting cells are discussed in the context of the possible role that phosphorylation-dephosphorylation mechanism may play in controlling the growth/differentiation rate in the B cell lineage.  相似文献   

12.
In the matured chick retina, alkaline phosphatase (ALPase) activity is specifically localized in the outer plexiform layer and in horizontal and Müller cells. In the developing chick retina, ALPase activity is first recognized in growing neurites from horizontal cells during the 13th day of incubation, when synaptogenesis begins in the outer plexiform layer. Intraocular administration of ALPase inhibitors to developing chick embryos resulted in developmental disturbances in differentiation of the outer plexiform layer and also of photoreceptor cells. We have now extended these studies to an in vitro system. ALPase activity was studied by ultracytochemistry in cultured retinal cells from chick embryos, and the effects of specific ALPase inhibitor on retinal development were also analyzed. Two cell types showed intense ALPase activity: 1) flat glial cell, which formed a multi-layered epithelial sheet and 2) neuronal cell found within cell aggregates. Some cellular processes forming a neuropil-like structure within these aggregates also showed ALPase activity. When the ALPase inhibitor bromotetramisole was present in the culture medium, there was delay in aggregate formation and the development of neuritic processes was also affected. Moreover, this treatment also caused a considerable reduction in the number of photoreceptor cells present in the culture. The present results indicate that ALPase activity plays a significant role in retinal cell differentiation.  相似文献   

13.
MC3T3-E1 cells grown with ascorbic acid express sequentially osteoblastic marker proteins such as alkaline phosphatase (ALPase) and then form a mineralized extracellular matrix (ECM) as a consequence of osteoblastic differentiation. To explore the functional roles of ALPase in the process of osteoblastic maturation, an inducible expression vector for antisense ALPase RNA was constructed and stably transfected into MC3T3-E1 cells. The expression of antisense ALPase RNA in the differentiated MC3T3-E1 transfectants reduced markedly the ALPase activity, which resulted in a significant decrease in the deposition of minerals upon prolonged culture. These findings demonstrated directly that ALPase participated in the mineralizationof ECM.  相似文献   

14.
In F9 mouse embryonal carcinoma cells, the specific activity of alkaline phosphatase (ALPase) increases markedly during endodermal differentiation induced by retinoic acid (RA) treatment, but the specific 5'-nucleotidase activity of a similar ecto-phosphatase increases only temporally. Polyacrylamide disc gel electrophoresis showed that F9 cells express only type I ALPase, whereas RA-treated F9 cells express both type I and type II ALPases. Type II ALPase is a minor form on day 1 of RA treatment and becomes the major form on day 4. RA-treated F9 cells also expressed mRNAs for endoderm cell-specific molecules, such as α-fetoprotein, type IV collagen and laminin B1 chain, but their expression of M2-type pyruvate kinase mRNA of an essential non-ectoenzyme remains constant throughout endodermal differentiation. Northern blot analyses showed that type I ALPase was encoded by a liver (L)/bone (B)/kidney (K)/placenta (P)-type mRNA. The expression of L/B/K/P-type ALPase mRNA was induced in RA-treated F9 cells, but its increase preceded that of ALPase specific activity. These results suggest that the expression of L/B/K-type ALPase is regulated at the translational and/or post-translational level. The differential inhibition of ALPases by L-phenylalanine/L-homoarginine and the thermal inactivation (56°C for 60 min) inferred that type II ALPase was also an L/B/K-type isozyme.  相似文献   

15.
Dental papilla mesenchymal cells differentiate into odontoblasts through epithelial-mesenchymal interactions. However, the mechanism by which enamel epithelial cells affect the differentiation of dental mesenchymal cells remains unknown. Alkaline phosphatase (ALPase) is a marker for odontoblast-like differentiation, because odontoblasts show much higher ALPase activity than dental undifferentiated mesenchymal cells. The continuously growing rabbit incisor is a good model for the epithelial-mesenchymal interaction during odontogenesis. In the present study, we isolated and maintained rabbit incisor-derived epithelial cells and rabbit incisor pulp-derived fibroblastic cells, and examined the effect of epithelial cells on ALPase activity in fibroblastic cells. Epithelial cells were stained with anti-cytokeratin 5 and 8 antibodies and showed the expression of tuftelin mRNA. In separate cultures of epithelial cells or fibroblastic cells, ALPase activity and mRNA levels were very low, but were upregulated in co-cultures of epithelial and fibroblastic cells. Histochemical analysis found high ALPase activity in fibroblastic cells close to epithelial cells. These findings suggest that epithelial cells play an important role in promoting ALPase expression in pulp fibroblastic cells. The co-culture system developed here will be useful for examining the role of the epithelial-mesenchymal interaction during odontoblast differentiation.  相似文献   

16.
To determine the roles of nitric oxide (NO) and its metabolite, peroxynitrite (ONOO(-)), on osteoblastic activation, we investigated the effects of a NO donor [ethanamine, 2, 2'-(hydroxynitrosohydrazono)bis- (dNO)], an O(-2) donor (pyrogallol), and an ONOO(-) scavenger (urate) on alkaline phosphatase (ALPase) activity and osteocalcin gene expression, which are indexes of osteoblastic differentiation. dNO elevated ALPase activity in the osteogenic MC3T3-E1 cell line. The combination of dNO and pyrogallol reduced both ALPase activity and osteocalcin gene expression. Because both indexes were recovered by urate, ONOO(-), unlike NO itself, inhibited the osteoblastic differentiation. Furthermore, treatment with a combination of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was found to yield ONOO(-) as well as NO and O(-2). The reductions in ALPase activity and osteocalcin gene expression were also restored by urate. We conclude that ONOO(-) produced by TNF-alpha and IL-1beta, but not NO per se, would overcome the stimulatory effect of NO on osteoblastic activity and inhibit osteoblastic differentiation.  相似文献   

17.
大鼠原生殖细胞培养和分化的研究   总被引:2,自引:0,他引:2  
研究大鼠胚胎原生殖细胞(primordial germ cells,PGCs)的培养及分化,取受精后11-12.5天大鼠PGCs进行原代培养,光、电镜观察PGCs及其分化细胞的微细结构,碱性磷酸酶染色检测细胞的分化程度,结果显然显示大鼠PGCs大而圆,散在分布,或多个聚集成团,胞质中含有椭圆形的线粒体和丰富的核糖体,在鼠胚成纤维细胞饲养层存在的情况下,PGCs保持未分化状态,碱性磷酸酶反应呈强阳性,在缺乏饲养层的条件下PGCs很快分化,形态不规则,有伪足,碱性磷酸酶反应减弱,进一步分化可形成具有细长突起的神经元样细胞,胞质中含有细丝束的表皮细胞,可见节律性跳动的心肌细胞,具有分泌颗粒的分泌细胞及似血管,心脏形状的管腔结构等,由PGCs分化来的细胞碱性磷酸酶反应均呈阴性,结果表明大鼠PGCs能够分化形成三个胚层的衍生物,生殖嵴来源的PGCsp是一种具有发育全能性的胚胎多能干细胞,本研究同时证明鼠胚饲养层能抑制大鼠PGCs的分化。  相似文献   

18.
19.
The periodontal ligament (PDL) is a specialized, mechanically responsive tissue that adapts via cellular responses to equilibrate the effects of mechanical stress on teeth. However, the mechanism of remodelling by which individual cells in periodontal tissue detect and respond to mechanical stress is not well understood. To identify the cellular mechanisms induced by mechanical stress in the periodontal ligament, we examined the effects of cyclic stretching on periodontal ligament fibroblast-like cells (PDL cells). Furthermore, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and interaction with peripheral blood mononuclear cells (PBMCs) on mechanically-simulated PDL cells. PDL cells were cultured on type I collagen-coated silicon membranes with 10% FBS alpha-MEM, and then subjected to cyclic mechanical stimulation (1 s stretching/1 s relaxation, 15% maximum elongation). Alkaline phosphatase activity was monitored by cytochemical and spectrophotometric methods. Morphologically, the cells assumed a spindle shape, and the cytoskeletal components, including microtubules and F-actin filaments, were aligned perpendicular to the strain force vector. Cyclic stretching decreased ALPase activity in PDL cells. The anabolic systemic hormone 1,25(OH)(2)D(3) increased ALPase activity, but this effect was suppressed by cyclic stretching. ALPase activities were reduced by co-culture with PBMCs, including lymphocytes and monocytes. This PBMC-induced ALPase reduction was synergistically reduced by cyclic stretching. ALPase activity was decreased by co-culture with PBMCs, and ALPase activity was reduced synergistically by treatment with PBMCs and cyclic stretching. We conclude that PDL cells changed their shape and alignment in response to cyclic stretching. Furthermore, local factors, such as mechanical stress and PBMCs, showed synergistic suppressive effects on ALPase activity.  相似文献   

20.
BMP-3b (also called GDF-10) is a novel BMP-3-related protein recently discovered in rat femur tissue. Gene expression of BMP-3b in osteoblastic cells and its regulation by prolonged culture, BMP-2 and transforming growth factor beta1 (TGF-beta1) were examined. The BMP-3b gene was highly expressed in rat osteoblasts obtained from calvarial bones but not in the osteoblastic cell lines (MC3T3-E1 and U2-OS). BMP-3b mRNA increased during osteoblastic differentiation in prolonged culture and was associated with increased alkaline phosphatase (ALPase) activity. When BMP-2, an enhancer of ALPase activity, was added to the primary osteoblast culture, BMP-3b mRNA increased 6.9-fold after 24 h. In contrast, TGF-beta1 treatment, which suppresses ALPase activity, rapidly and completely inhibited gene expression of BMP-3b. The regulation of BMP-3 mRNA differed from that of BMP-3b, even though both proteins share 81% identity. These findings indicate that BMP-3b gene expression is regulated by osteoblastic differentiation and BMP-3b functions in highly differentiated osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号