首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
骨骼肌萎缩发生于多种生理和疾病状态下,如废用、衰老和慢性病。核因子-κB(NFκB)信号通路包括NF-κB、抑制蛋白-κB(IκB)和IκB激酶(IKK),它们在肌萎缩中起着重要作用,能够引起肌肉蛋白质降解、诱导炎症、阻断损伤/萎缩后肌纤维的再生。NF-κB转录靶包括MuRF-1、YY1和MMP-9,还可通过转录后机制调节MyoD。而且,应用遗传操作小鼠模型已证明NF-κB还是防止骨骼肌萎缩的重要分子靶标。该文将综述NF-κB在骨骼肌萎缩中的作用,为开发新的方法治疗肌萎缩提供参考。  相似文献   

2.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

3.
目的:探讨川芎及川芎中起活血作用的两种主要药效成分(阿魏酸钠和川芎嗪)对后肢去负荷大鼠比目鱼肌萎缩的影响与作用。方法:尾部悬吊法建立大鼠废用性肌萎缩模型,用免疫组化技术及血液流变学方法观察药物对比目鱼肌各项指标的影响。结果:与后肢去负荷大鼠相比①高剂量的阿魏酸钠和川芎嗪使比目鱼肌I型肌纤维横截面积分别增加了37.3%和39.4%(P〈0.05);②三种药物均能明显抑制梭外肌纤维MHCII表达水平的升高(P〈0.01);③使肌梭内核袋2纤维MHCII的表达由阳性转变为阴性;④并能明显降低低切变率下的全血粘度。结论:川芎及两种主要药效成分阿魏酸钠与川芎嗪均能不同程度地对抗废用性肌萎缩的发生,以高剂量川芎嗪与阿魏酸钠的药效最为明显。  相似文献   

4.
目的:观察血管紧张素Ⅱ在废用性肌萎缩过程中对骨骼肌肌纤维类型转化的影响。方法:以雌性SD大鼠为研究对象,按随机配对原则分成4组(n=8):即假手术组(C)、AngⅡ组(CA)、悬吊组(T)和悬吊+AngⅡ(TA)。ATPase染色法分析评价各组肌纤维类型的转化情况。结果:T组与C组相比,Ⅱ型肌纤维比例显著升高(P<0.05),而TA组与T组相比Ⅱ型肌纤维比例下降(P<0.05)。结论:在骨骼肌萎缩过程中,肌纤维类型出现Ⅰ型肌纤维向Ⅱ型肌纤维类型的转化;而血管紧张素Ⅱ在骨骼肌萎缩过程中抑制了肌纤维类型由慢向快的转化。  相似文献   

5.
骨骼肌由异质性的肌纤维组成,不同类型的肌纤维具有不同的形态、代谢、生理和生化特性.根据不同肌纤维中表达的特异肌球蛋白重链亚型可将成体哺乳动物骨骼肌纤维分为4类,即Ⅰ,Ⅱa,Ⅱx和Ⅱb型.骨骼肌保持高度可塑性,当机体受到某些生理或病理刺激时,骨骼肌为了适应需要,通过激活胞内相关信号通路改变肌纤维特异基因的表达从而诱发肌纤维类型的转化.本文综述了细胞内参与调控肌纤维类型转化的多条重要信号通路,如Ca2+信号通路,Ras/MAPK信号通路及多种转录调节因子,辅激活因子和抑制子等,为改善肉类品质,提高运动训练效果及治疗肌肉相关疾病奠定了理论基础.  相似文献   

6.
党凯  高云芳 《动物学杂志》2016,51(3):497-506
非冬眠动物的骨骼肌在废用条件下会发生明显的萎缩。冬眠动物在历经数月的冬眠期骨骼肌废用后,仍能保持较完整的形态结构与良好的收缩功能,成为天然的抗废用性肌萎缩动物模型。探明冬眠动物骨骼肌对废用的生理适应机制,是生理生态学领域的重要课题之一。本文从形态结构、肌纤维类型和收缩功能等方面综述了冬眠动物对冬眠期骨骼肌废用状态的生理适应,并从蛋白质代谢、生长与分化的调控、代谢类型的调控、氧化应激以及线粒体结构与氧化能力等方面分析了冬眠期骨骼肌生理适应的可能机制。  相似文献   

7.
骨骼肌是人体氨基酸和蛋白质的主要贮存、代谢库,其正常功能和代谢过程受到多种病理因素的影响。骨骼肌萎缩发生于骨骼肌稳态严重失衡状态下,对患者生活和社会医疗造成了沉重负担。近年来,由于世界肥胖人群数量激增,肥胖诱导的骨骼肌萎缩正日益成为公共卫生的严峻挑战之一。肥胖诱导的骨骼肌萎缩过程涉及多种信号分子或通路的改变,如泛素蛋白酶系统、自噬溶酶体系统、胰岛素/IGF1-PI3K-Akt、肌肉生长抑制素、白细胞介素-6、肿瘤坏死因子等;这些信号分子或通路在肥胖状态下被激活或抑制后,可共同影响蛋白质合成/分解平衡进而造成骨骼肌萎缩。基于上述信号分子或通路,系统总结并讨论了肥胖诱导的骨骼肌萎缩机制,以期为寻找缓解/治疗肥胖诱导的肌萎缩靶点和进一步开发利用天然植物化学物提供理论依据。  相似文献   

8.
目的:观察4周离心耐力运动对2型糖尿病大鼠代谢障碍及肌萎缩的影响,探讨myostatin/Smad3/atrogin-1信号通路在肌萎缩中的作用。方法:9周高脂饲养联合STZ注射建立2型糖尿病大鼠模型。将普通饲料组大鼠随机分为对照组(C,n=6)和运动组(E,n=9;将2型糖尿病模型组大鼠随机分为糖尿病对照组(D,n=8)和糖尿病运动组(DE,n=12)。运动方案:坡度-5°,跑速16 m/min,每次60 min、每日一次,每周训练5 d,连续4周。最后一次运动后禁食12 h,测定空腹血糖(FBG)、空腹胰岛素(FINS),计算稳态模式胰岛素抵抗指数(HOMA-IR)和胰岛素敏感指数(ISI),进行葡萄糖耐量试验。取比目鱼肌观察肌萎缩现象并检测myostatin、Smad3、p-Smad3和atrogin-1表达情况。结果:①与对照组相比,糖尿病组大鼠体重、比目鱼肌质量/胫骨长和肌纤维平均横截面积、FINS和ISI显著降低(P<0.01),FBG、HOMA-IR和血糖曲线下面积(AUCBG)以及myostatin、Smad3、p-Smad3、atrogin-1表达均显著升高(P<0.01)。②4周离心运动后,与糖尿病组相比,糖尿病运动组大鼠肌纤维平均横截面积显著升高(P<0.01),AUCBG、HOMA-IR及myostatin、p-Smad3、atrogin-1表达显著降低(P<0.05,P<0.01)。结论:myostatin/Smad3/atrogin-1信号通路上调是导致2型糖尿病肌萎缩的重要原因,4周离心耐力运动可能通过下调myostatin、p-Smad3和atrogin-1表达抑制肌萎缩,进而改善2型糖尿病代谢障碍,提高胰岛素敏感性。  相似文献   

9.
Leptin介导的JAK/STAT信号通路主要参与脂类代谢的调节。JAK/STAT信号通路激活后,CPT-1的表达水平升高,通过促进脂肪酸分解而参与脂类代谢的调节。本文主要介绍了近年来关于leptin介导的JAK/STAT信号通路的组成、作用机制、活性调节和leptin与受体结合激活细胞内多个信号通路如JAK/STAT、PI3K/Akt、MAPK等,以及这些信号通路对脂类代谢调节的最新研究进展。  相似文献   

10.
骨骼肌质量约占健康成人体重的40%。骨骼肌不仅直接参与运动,还作为分泌器官分泌多种肌肉因子影响其它器官的功能,因此骨骼肌功能的维持对机体健康具有重要意义。骨骼肌质量作为骨骼肌功能的基础,常常受到运动、疾病等多种因素的影响。如抗阻运动可引起骨骼肌细胞蛋白质合成增加,诱发肌肉肥大;而肢体废用、慢性阻塞性肺疾病、心衰、慢性肾病、恶病质、杜氏肌营养不良等疾病可导致骨骼肌细胞蛋白质合成降低或降解增强,引起肌肉萎缩。骨骼肌肥大或萎缩的过程涉及多条信号通路的改变,如IGF-1/PI3K/Akt、肌肉生长抑制素、G蛋白等介导的信号通路参与了骨骼肌肥大的调控;而泛素-蛋白酶体途径、IGF-1/Akt/FoxO、自噬-溶酶体途径、NF-κB及糖皮质激素介导的信号通路则在调节肌肉萎缩中发挥重要作用。这些信号通路在不同的条件下被激活或抑制,共同调节骨骼肌质量。本文综述骨骼肌质量控制信号通路及其主要转导机制,以加深对骨骼肌质量调控的理解与认识。  相似文献   

11.
随着全球老龄化进程加剧,老年人口剧增,伴随着工作和生活方式的改变,导致体育锻炼减少与生活作息不规律等问题愈发严重。这样的结果显著增加了骨骼肌萎缩的发病率,降低了老年和慢性疾病人群机体健康,影响其生活质量。与此同时,饮食不均衡和运动量降低以及激素水平波动等进一步加剧骨骼肌萎缩的发生,其病理机制主要为慢性炎症加重、线粒体功能障碍、自噬功能状态低下、细胞凋亡增加、肌卫星细胞功能受损以及昼夜节律紊乱等。其中,随着昼夜节律相关研究的深入,骨骼肌作为机体最大的外周生物钟,可通过调控昼夜节律核心基因BMAL1以及CLOCK基因,对骨骼肌纤维结构、线粒体功能、肌肉质量等产生影响。运动锻炼作为改善骨骼肌质量的重要干预策略,还可激活昼夜节律信号通路,调控其相位,进而改善肌肉再生、提高肌肉力量,发挥延缓肌萎缩作用。为此,本文从昼夜节律的角度去阐述其与肌萎缩发生以及潜在运动干预的分子机制,以期为肌萎缩的预防、治疗及康复提供新的靶向思路。  相似文献   

12.
骨骼肌卫星细胞是一种肌源性干细胞, 在骨骼肌的生长、发育及肌肉损伤修复中有着至关重要的作用。肌卫星细胞通过增殖、分化融合肌纤维形成新的肌核从而导致骨骼肌纤维的肥大以及骨骼肌纤维类型的相互转化, 进而影响肉品质的形成。文章从肌纤维的发育与肉品质形成、卫星细胞分化与肌纤维特征的相关性等方面, 对卫星细胞的Notch等经典遗传信号通路和miRNA等表观遗传调控及其对肉品质的影响进行了综述。  相似文献   

13.
沙眼衣原体感染可导致沙眼、性传播性疾病、不孕症等疾病,主要病理表现是炎症反应引起的组织损伤和瘢痕.因此,沙眼衣原体诱导产生的炎症因子是导致疾病的关键,沙眼衣原体可直接感染内皮细胞产生各种前炎因子,但其机制目前还不清楚.通过ELISA和免疫印迹等方法,检测到沙眼衣原体感染HeLa229细胞可产生IL-8,IL-1α,IL-1β,IL-6等前炎因子,并且沙眼衣原体感染可以主要激活宿主细胞MAPK/ERK和MAPK/P38信号通路.抑制MAPK/ERK和MAPK/P38信号通路显示,两条通路在沙眼衣原体感染过程中参与调节不同的炎症因子产生.MAPK/P38信号通路的活化参与调控IL-1α,IL-6的产生,而IL-8则同时受MAPK/ERK和MAPK/P38两条通路的调控.  相似文献   

14.
Wnt信号通路分为经典Wnt信号通路和非经典Wnt信号通路,而非经典Wnt信号通路又可分为Wnt/Ca^(2+)信号通路、Wnt/PCP信号通路和Wnt/PI3K信号通路。经典Wnt信号通路的恰当激活可有效抑制Notch信号通路,促进成肌分化和肌管融合。但经典Wnt信号通路过早或持续性激活,可通过调节多种细胞因子的表达,加重损伤骨骼肌纤维化,损害骨骼肌再生。而Wnt7a通过多条非经典Wnt信号通路刺激肌卫星细胞扩增、迁移,促进骨骼肌损伤修复,并能激活Akt/mTOR信号通路而诱导肌纤维肥大。  相似文献   

15.
Wnt信号通路分为经典Wnt信号通路和非经典Wnt信号通路,而非经典Wnt信号通路又可分为Wnt/Ca~(2+)信号通路、Wnt/PCP信号通路和Wnt/PI3K信号通路。经典Wnt信号通路的恰当激活可有效抑制Notch信号通路,促进成肌分化和肌管融合。但经典Wnt信号通路过早或持续性激活,可通过调节多种细胞因子的表达,加重损伤骨骼肌纤维化,损害骨骼肌再生。而Wnt7a通过多条非经典Wnt信号通路刺激肌卫星细胞扩增、迁移,促进骨骼肌损伤修复,并能激活Akt/mTOR信号通路而诱导肌纤维肥大。  相似文献   

16.
心肌能够应对内外环境改变而发生重塑。失重/模拟失重等去负荷条件可导致心肌萎缩、心脏功能下降。从系统和细胞分子层面揭示失重/模拟失重造成心肌萎缩的机制对于航天飞行后心血管功能紊乱的对抗研究至关重要。失重/模拟失重导致机体血流动力负荷下降、代谢需求降低和神经内分泌变化;同时导致包括钙相关信号、NF-κB通路、ERK通路、泛素-蛋白酶体途径以及自噬等通路的改变,上述变化在心肌萎缩的发生发展过程中发挥着关键调控作用。本文从系统和细胞分子层面对失重/模拟失重引起心肌萎缩的发生机制进行综述。  相似文献   

17.
肺纤维化(pulmonary fibrosis)是进行性、致命性的疾病。其致病机制不明,治疗效果差。PI3K/Akt信号通路主要与细胞的生长、增殖、分化、凋亡及血管形成等有关。近年来,随着对PI3K/Akt信号通路的深入研究,发现其活化后可激活下游中的一些因子参与肺纤维化,且与其他通路协同作用促进肺纤维化的形成。因此该通路有可能成为治疗肺纤维化的新靶点。将PI3K/Akt信号通路参与肺纤维化形成的研究进展作一综述。  相似文献   

18.
纤毛是以微管为核心组分、突出于细胞表面且高度保守的细胞器,具有运动、摄食、感知并传递外界信号等功能。纤毛发生是纤毛在细胞膜表面定位并装配的过程。多年来,对纤毛发生过程及其调控机制的探索始终是亚细胞结构与功能研究的热点之一。Wnt/PCP信号通路是参与胚胎及器官发育的主要信号转导途径之一。近年来大量研究显示,Wnt/PCP信号通路和纤毛发生密切相关。纤毛结构与功能的异常可造成Wnt/PCP信号通路异常,导致纤毛相关疾病的发生;同时,Wnt/PCP信号通路又决定着纤毛的形态和极性。因此,深入研究纤毛与Wnt/PCP信号通路的关系将有助于从细胞与分子生物学水平揭示纤毛发生的调控机制。  相似文献   

19.
高尔基体应激是因脑缺血再灌注等应激反应中,导致高尔基体蛋白质加工运输、分泌等功能改变,与多种细胞内的信号通路是密切相关的。我们综观近年相关文献,并综述其研究进展,结果认为高尔基体应激通过磷酸肌醇、蛋白激酶C/蛋白激酶D、RAS/MAPK激酶、c AMP/PKA等信号通路发挥作用,参与缺血性脑卒中、脊髓损伤及神经变性疾病等发病机制。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号