首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Abstract The three new full‐length cDNA sequences including the complete 5′‐and 3′‐ untranslated regions (UTR) coding for cytochrome P450s from Aedes albopictus have been obtained. The P450 proteins deduced from the nucleotide sequences shared 58.6% ‐ 62.4% amino acid identity with CYP6N1 and CYP6N2 from Anopheles gambiae, and 99% with each other. The three new complete sequences have been submitted and named as CYP6N3v1, CYP6N3v2 and CYP6N3v3 by the P450 Nomenclature Committee. The original cDNAs were obtained by rapid amplification of cDNA ends (RACE) approach with several pairs of gene specific primers based on the cDNA fragment previously obtained from deltamethrin‐resistant strain of Ae. albopictus. Further analysis showed that the three new sequences are present in both resistant strain and susceptible strain and might be effectively translated. In addition, the 5′‐ and 3′‐UTRs were compared between the CYP6N3vl‐v3 and other known insect P450s. The multiplicity of trans‐lational control of insect P450 genes was discussed.  相似文献   

3.
To elucidate the molecular mechanisms underlying drug detoxification, the structures of the members of the microsomal cytochrome P-450IID subfamily were analyzed by isolating, mapping and sequencing cytochrome P-450IID (CYP2D) cDNA clones from bovine liver. The screening was performed under nonstringent conditions so that most of the P-450IID subfamily members could be obtained. 114 of the 147 positive clones were classified into four groups on the basis of their restriction-enzyme maps. The maps of the four groups were highly similar, however, the clones of one group contained an insertion of approximately 500 bp in the coding region. Analysis of partial nucleotide sequences of several representative clones from each group showed that the bovine P-450IID subfamily in liver consisted of several, not many, highly similar members, differing by less than 7% in their nucleotide sequences. The location of the insertion found in the minor group corresponded to intron 7 and the GT/AG rule was found at the exon/intron boundary, suggesting that intron 7 was retained in this group. The complete nucleotide sequences of two clones from the major group were examined to determine the structures of the P-450IID subfamily in bovine liver. A full-length cDNA clone (1615 bp) and a partial cDNA clone (1538 bp) contained open reading frames encoding 500 and 487 amino acid residues, respectively. The partial clone lacked the nucleotide sequence corresponding to the first 13 N-terminal amino acid residues. The deduced amino acid sequences of the two clones were 98% similar, and 80% and 68% similar to those from human CYP2D6 and rat CYP2D1, respectively. Comparisons of the amino acid sequences of the P-450IID subfamily members showed the highly conserved C-terminal region of their molecules and the high similarity between the members in one species, especially in cattle and man.  相似文献   

4.
Recently, a new cytochrome P450 gene, CYP6D3, was identified from house fly. CYP6D3 was found upstream of a related gene (CYP6D1) on autosome 1. CYP6D3 cDNA sequences were obtained and compared from insecticide resistant (LPR) and susceptible (CS and Edinburgh) strains. Although each strain had a different CYP6D3 allele, the deduced amino acid sequences revealed no consistent differences between the susceptible and resistant strains. There was approximately 12-fold more CYP6D3 mRNA detected in adult LPR flies compared to CS, and the elevated level of expression in LPR was not due to gene amplification. Northern blots indicate expression of CYP6D3 mRNA is developmentally regulated with no expression in eggs, yet it is readily detectable in larvae as well as male and female adults. Phenobarbital is a well studied inducer of P450s in insects and it induced expression of CYP6D3 mRNA in both the CS (16-fold) and LPR (1.6 fold) strains. The CYP6D3 5' flanking regions were sequenced from the resistant and susceptible strains. Possible regulatory sequences within this region are discussed.  相似文献   

5.
The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.  相似文献   

6.
白纹伊蚊细胞色素P450 CYP6家族基因多样性的研究(英文)   总被引:4,自引:0,他引:4  
根据已获得的白纹伊蚊CYP6家族某成员cDNA序列片段AEDR ,设计基因特异性引物 ,以白纹伊蚊总RNA为模板 ,进行cDNA末端快速扩增 ,扩增产物经T -A克隆、测序。结果显示 :通过 5’ RACE获得 1个非全长cDNA序列 (GZS331 ) ,其与CYP6N1、CYP6N2的同源性分别为 59 8%和 59 1 % ,与CYP6N3v1 -v3同源性最高 ,达 83 9% - 84 3% ;通过 3’ RACE获得 6个非全长cDNA序列 ,其中来自抗性株的GZG0 33序列与CYP6N3v1 -v3的同源性达 98 2 % - 99 1 % ,而其余 3’ RACE克隆与CYP6N3v1 -v3的同源性则达 84 3% - 85 6%。上述所有非全长cDNA序列均与哺乳动物CYP3A1以及夜蛾CYP9A1有较高的同源性 ,分别为 2 3% - 36 1 %和 2 7 6% - 34 1 %。用PC/GENE软件所绘制的系统树显示出与同源性分析相一致的结果。所得非全长cDNA序列上报国际P450命名委员会进行统一的命名 ,并对蚊虫中细胞色素P450基因多样性及其形成原因进行了分析  相似文献   

7.
CYP6F1 (GenBank/EMBL accession No. AY662654), a novel gene with a complete encoding sequence in the cytochrome P450 family 6, was cloned and sequenced from deltamethrin-resistant 4th instar larvae of Culex pipiens pallens. The cDNA sequence of CYP6F1 has an open reading frame of 1527 bp, which encodes a putative protein of 508 amino acid residues. The deduced amino acid sequence of CYP6F1 indicated that the encoded P450 has conserved domains of a putative membrane-anchoring signal,putative reductase-binding sites, a typical heme-binding site, an ETLR motif and substrate recognition sites.Semi-quantitative RT-PCR analysis indicated that the CYP6F1 gene was expressed to a greater extent in the deltamethrin-resistant strain than in the susceptible strain of Cx. pipiens pallens. The expression levels of the CYP6F1 gene in the deltamethrin-resistant 1 st, 2nd, 3rd, 4th instar larvae and adult female mosquitoes differed, with highest expression levels in the 4th instar larvae. In addition, the CYP6F1 gene was stably expressed in mosquito C6/36 cells, and the expected 61.2 kDa band was identified by Western blotting. The cells transfected with CYP6F1 had an increased resistance to deltamethrin as compared with control cells.These results indicate that CYP6F1 is expressed at higher levels in the deltamethrin-resistant strain, and may confer some insecticide resistance in Cx. pipiens pallens.  相似文献   

8.
Alkaloids, which are naturally occurring amines, are biosynthesized and accumulated in plant tissues such as roots, leaves, and stems. Many alkaloids have pharmacological effects on humans and animals. Cytochrome P450 (P450 or CYP) monooxygenases are known to play key roles in the biosynthesis of alkaloids in higher plants. A cDNA clone encoding a P450 protein consisting of 502 amino acids was isolated from Petunia hybrida. The deduced amino acid sequence of the cDNA clone showed a high level of similarity with the other P450 species in the CYP71D family; hence, this novel P450 was named CYP71D14. Among plant P450 species, CYP71D14 had 45.7% similarity in its amino acid sequence to CYP71D12, which is involved in the biosynthesis of the indole alkaloids vinblastine and vincristine. Expression of CYP71D14 mRNA in Petunia plants was examined by Northern blot analysis by using a full-length cDNA of CYP71D14 as a probe. CYP71D14 mRNA was expressed most abundantly in the roots. The nucleotide sequence of CYP71D14 has been submitted to the DDBJ, EMBL, and GenBank nucleotide databases under the accession number AB028462. An erratum to this article can be found at  相似文献   

9.
We have isolated multiple cDNAs encoding cytochromes P450 (P450s) from Arabidopsis thaliana employing a PCR strategy. Degenerate oligonucleotide primers were designed from amino acid sequences conserved between two plant P450s, CYP71A1 and CYP73A2, including the heme-binding site and the proline-rich motif found in the N-terminal region, and 11 putative P450 fragments were amplified from first-strand cDNA from 7-day-old Arabidopsis as a template. With these PCR fragments as hybridization probes, 13 full-length and 3 partial cDNAs encoding different P450s have been isolated from an Arabidopsis cDNA library. These P450s have been assigned to either one of the established subfamilies: CYP71B, CYP73A, and CYP83A; or novel subfamilies: CYP76C, CYP83B, and CYP91A. The primary protein structures predicted from the cDNA sequences revealed that the regions around both the heme-binding site and the proline-rich motif were highly conserved among all these P450s. The N-terminal structures of the predicted P450 proteins suggested that these Arabidopsis P450s were located at the endoplasmic reticulum membrane. The loci of four P450 genes were determined by RFLP mapping. One of the clones, CYP71B2, was located at a position very close to the ga4 and gai mutations. RNA blot analysis showed expression patterns unique to each of the P450s in terms of tissue specificity and responsiveness to wounding and light/dark cycle, implicating involvement of these P450s in diverse metabolic processes.  相似文献   

10.
We have isolated and sequenced a novel P450 gene (CYP319A1) from the cattle tick, Boophilus microplus. The CYP319A1 cDNA encodes a protein of 531 amino acids with an estimated molecular weight of 60.9k. It contains all highly conserved motifs characteristic of P450 enzymes. Comparison of deduced amino acid sequence with other CYP members shows that the CYP319A1 is more closely related to CYP4 family, but its overall identity to the CYP4 family is less than 40%. Therefore, it was assigned to a new P450 family by the P450 nomenclature committee. A pseudogene which shares high homology with the CYP319A1 was identified. Analysis of genomic sequence of the pseudogene indicated that the pseudogene contains two additional DNA inserts in the coding region, which disrupt the open reading frame. RT-PCR analysis showed that CYP319A1 is expressed in both susceptible and acaricide-resistant ticks.  相似文献   

11.
Abstract Several pairs of specific primers according to the obtained cDNA sequence fragment from deltamethrin‐resistant Aedes albopktus were designed to amplify new CYP6 genes from total RNA of Aedes albopictus by rapid amplification of cDNA ends (RACE) technique. The products of RACE were cloned and selected for sequencing. The deduced amino acid sequences were subjected to homologous analysis. The results indicated that the identities of clone GZS331 sequence from 5′‐RACE products and clone GZG033 sequence from 3′‐RACE products to CYP6N3vl ‐ v3 are 83.9% ‐ 84.3% and 98.2% ‐ 99.1% respectively; while the identities of the others from 3′‐RACE products to CYP6N3v1 ‐ v3 are 84.3% ‐ 85.6%. All of these obtained cDNA sequences have a higher homology to CYP3A1 in mouse and CYP9A1 in moth. The dendrogram constructed by PC/GENE software showed similar results to homologous analysis. These obtained sequences were submitted and named by the P450 Nomenclature Committee. The diversity of cytochrome P450 genes in Culicidae species was discussed.  相似文献   

12.
13.
Liu N  Li T  Reid WR  Yang T  Zhang L 《PloS one》2011,6(8):e23403
Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.  相似文献   

14.
15.
【目的】本研究旨在通过饲喂ame-miR-79的模拟物(mimic)和抑制物(inhibitor)对意大利蜜蜂Apis mellifera ligustica工蜂幼虫肠道内的ame-miR-79分别进行过表达和敲减,探究ame-miR-79对幼虫肠道内靶基因表达的调控作用。【方法】通过分子克隆与Sanger测序验证意大利蜜蜂工蜂幼虫肠道内ame-miR-79的序列真实性。通过饲喂mimic-miR-79和inhibitor-miR-79对意大利蜜蜂工蜂4-6日龄幼虫肠道内的ame-miR-79分别进行过表达和敲减。采用相关生物信息学软件进行ame-miR-79的靶基因预测与分析。通过RT-qPCR检测ame-miR-79的过表达和敲减效果及过表达和敲减ame-miR-79后靶基因的相对表达量。【结果】ame-miR-79在意大利蜜蜂工蜂幼虫肠道内真实存在。与无义模拟物(nonsense mimic, mimic-NC)组相比,mimic-miR-79组的4-6日龄幼虫肠道内ame-miR-79的表达量皆极显著上调;与无义抑制物(nonsense inhibitor, inhibitor-NC)组相比,inhibitor-miR-79组的4和5日龄幼虫肠道内ame-miR-79的表达量显著下调,6日龄幼虫肠道内ame-miR-79的表达量极显著下调。ame-miR-79共靶向303个基因,涉及27个GO条目和179条KEGG通路。相较于mimic-NC组,靶基因细胞色素P450基因CYP450在mimic-miR-79组的4和5日龄幼虫肠道内均极显著下调表达,而在6日龄幼虫肠道内上调表达;靶基因fringe糖基化转移酶(fringe glycosyltransferase, FG)基因在4日龄幼虫肠道内下调表达,在5日龄幼虫肠道内显著下调表达,而在6日龄幼虫肠道内上调表达。相较于inhibitor-NC组,CYP450在inhibitor-miR-79组的4日龄幼虫肠道内极显著上调表达,在6日龄幼虫肠道内上调表达,而在5日龄幼虫肠道内下调表达;FG的表达水平在4日龄幼虫肠道内显著上调,在5和6日龄幼虫肠道内极显著上调。【结论】ame-miR-79在意大利蜜蜂工蜂幼虫肠道内真实存在;通过饲喂模拟物和抑制物能分别实现意大利蜜蜂工蜂幼虫肠道内ame-miR-79的有效过表达和敲减;ame-miR-79负调控意大利蜜蜂工蜂幼虫肠道内CYP450和FG的表达。  相似文献   

16.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

17.
The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.  相似文献   

18.
蜕皮激素对昆虫生长、发育和繁殖有重要调控作用,尤其对蜕皮和变态过程。利用GenBank上登录的蜕皮激素C26羟基化酶候选基因CYP18A1的氨基酸序列对家蚕Bombyx mori全基因组数据库进行BLASTP比对,发现了家蚕直向同源基因(ortholog),其完全编码序列经RT-PCR检测和克隆、测序验证后,再以此为信息探针检索家蚕表达序列标签(expressed sequence tags,EST)数据库进行拼接延伸,获得了一条包括5′非翻译区在内的长度为1 737 bp的cDNA序列,验证结果也表明与电子克隆序列完全一致(GenBank登录号为EF421988,P450命名委员会将其命名为CYP18A1)。该基因的开放阅读框为1 623 bp,编码541个氨基酸,含有包括P450s特征结构域在内的所有昆虫P450基因的5个保守结构域,其推定的分子量为61.67 kD,等电点为 8.54。将该基因cDNA序列与家蚕基因组序列进行比对,结果表明该基因具有6个外显子,5个内含子,外显子/内含子边界符合经典的GT-AG规则。同源性分析也发现家蚕CYP18A1与其他昆虫的直向同源基因具有较高相似性。用RT-PCR方法对家蚕主要发育变态时期与组织进行检测,显示出该基因的转录表达不仅具有时空特异性,而且在表达时期上与已报道的蚕体内蜕皮激素含量变化有紧密的一致性。该研究进一步证实了CYP18A1基因与昆虫体内蜕皮激素代谢平衡相关联。  相似文献   

19.
To isolate cDNAs for forms of cytochrome P450 from rat prostate, a lambda gt11 cDNA library from this tissue was screened with a mixture of oligonucleotide probes directed against the conserved heme binding region of different P450 isozymes. A cDNA clone (PP1) encoding a part of a novel form of cytochrome P450 was isolated and the deduced amino acid sequence showed 76% identity with cytochrome P450 IVA1, indicating that PP1 is a member of the same subfamily. Northern blot analysis of total RNA from prostates of untreated rats revealed that two mRNAs of approximately 2.8 and 2.2 kb hybridize to PP1. The level of mRNA was induced fivefold above the level in intact animals by androgen treatment of castrated rats. Analysis of poly(A)+RNA levels in different tissues on Northern blots showed high constitutive expression of PP1 in the kidney, but no signal was detectable with RNA from liver; a weak signal was detected in the retina. Subsequent screening of a rat kidney cDNA library led to the isolation of the full-length clone KP1, which differs from Pp1 only in three nucleotide positions. KP1 is 1,957 bp long and contains a 1,527-bp-long open reading frame encoding a protein of 508 amino acids. In situ hybridization of rat kidney sections with PP1 showed that this P450 form is expressed in the outer stripe of the outer medulla, indicating its localization in the proximal tubules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号