首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Selection for anthracnose disease resistance is one of the top priorities in white lupin (Lupinus albus) breeding programs. A cross was made between a landrace P27174 (resistant to anthracnose) and a cultivar Kiev Mutant (susceptible). The progeny was advanced to F8 recombinant inbred lines (RILs). Disease tests on the RIL population from field trials over 2 years indicated that the disease resistance in P27174 was polygenic controlled. A modified selective genotyping strategy was applied in the development of molecular markers linked to quantitative loci conferring anthracnose diseases resistance. Eight individual plants representing high level of anthracnose resistance (HR), eight plants representing susceptibility (S), together with eight lines representing medium level of anthracnose resistance (MR), were subjected to DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphisms (MFLP). Six MFLP polymorphisms, which had the banding pattern matching the HR plants and the S plants, were identified as candidate markers linked to quantitative loci conferring anthracnose resistance. The six candidate MFLP markers were delineated into three groups based on their banding variation on the eight MR plants. One candidate MFLP marker each from the three groups was selected, cloned, sequenced, and converted into co-dominant, sequence-specific PCR markers. These three markers, designated as WANR1, WANR2 and WANR3, were tested on a segregating population containing 189 F8 RILs. The disease phenotyping data and the marker genotyping data on the F8 RILs were merged and analysed by the JMP software using the ‘fit-model’ function, which revealed that 71% of the phenotypic variation was controlled by genetic factors, while the other 29% of the phenotypic variation was due to environmental factors and environment × genotype interactions. On individual marker basis, marker WANR1 conditioned 39% of phenotypic variations of anthracnose resistance, followed by marker WANR2 with 8%, and WANR3 with 12%. Further analysis showed that WANR2 and WANR3 were on the same linkage group with a genetic distance of 15.3 cM. The combination of the two markers WANR1 and WANR3 explained 51% out from the 71% of the genetic controlled variations for disease resistance, indicating that the two QTLs working additively for anthracnose disease resistance. A simulation of marker-assisted selection on the F8 RIL population using the two markers WANR1 and WANR3 identified 42 out of the 189 RILs being homozygous for resistance-allele bands for both markers, and 41 of them showed disease severity below 3.0 on the 1 (highly resistant) to 5 (susceptible) scale. The two markers WANR1 and WANR3 have now been implemented for marker-assisted selection for anthracnose resistance in the L. albus breeding program in Australia.  相似文献   

2.
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

3.
Seeds and plants of wild type Lupinus albus are bitter and contain high level of alkaloids. During domestication, at least three genes conferring low-alkaloid content were identified and incorporated into commercial varieties. Australian lupin breeders exclusively utilize one of these sweetness genes, “pauper”, in all varieties to prevent possible bitterness contamination via out-crossing. A cross was made between a sweet variety Kiev Mutant (containing pauper gene) and a bitter type landrace P27174, and the population was advanced into F8 recombinant inbred lines (RILs). Twenty-four plants representing sweetness and bitterness were subjected to DNA fingerprinting by the microsatellite-anchored fragment length polymorphism (MFLP) technique. A dominant polymorphism was discovered in an MFLP fingerprint. The MFLP marker was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the software program MapManager with marker score data and alkaloid phenotyping data from a segregating population containing 190 F8 RILs indicated that the marker is linked to the pauper gene at the genetic distance of 1.4 centiMorgans (cM). This marker, which is designated as “PauperM1”, is capable of distinguishing the pauper gene from the other two low-alkaloid genes exiguus and nutricius. Validation on germplasm from the Australian lupin breeding program showed that the banding pattern of the marker PauperM1 is consistent with the alkaloid genotyping on a wide range of domesticated varieties and breeding lines. The PauperM1 marker is now being implemented for marker assisted selection in the Australian albus lupin breeding program.  相似文献   

4.
To broaden the gene pool of domesticated commercial cultivars of narrow-leafed lupin (Lupinus angustifolius L.), wild accessions are used as parents in crossing in lupin breeding. Among the progenies from wild × domesticated (W × D) crosses, the soft-seediness gene mollis is the most difficult domestication gene to be selected by conventional breeding methods, where molecular marker-assisted selection (MAS) is highly desirable. MAS in plant breeding requires markers to be cost-effective and high-throughput, and be applicable to a wide range of crosses in a breeding program. In this study, representative plants from an F8 recombinant inbred line (RIL) population derived from a W × D cross, together with four cultivars and four wild types, were used in DNA fingerprinting by microsatellite-anchored fragment length polymorphisms (MFLP). Two co-dominant MFLP polymorphisms were identified as candidate markers linked to the mollis gene, and one of the candidate markers was selected and converted into a co-dominant, sequence-specific PCR marker. This marker, designated MoLi, showed a perfect match with phenotypes of seed coat permeability on a segregating population consisting of 115 F8 RILs, confirming the close genetic linkage to the mollis gene. Validation tests showed that the banding pattern of marker MoLi is consistent with all the 25 historical and current commercial cultivars released in Australia, and is consistent with mollis genotypes in 119 of the 125 accessions in the Australian L. angustifolius core collection. Marker MoLi provides a cost-effective way to select the mollis gene in a wide range of W × D crosses in lupin breeding.  相似文献   

5.
To construct a molecular-marker-assisted selection (MAS) system, research was done on identifying molecular markers linking to longer frond length, a crucial selection index in the breeding of the commercially important seaweed Saccharina japonica. An F2-segregant population of 92 individuals was obtained by crossing two prominent S. japonica strains. Genomic DNA from ten individuals with the longest frond and ten individuals with the shortest frond in the F2-segregant population were mixed to create two DNA pools for screening polymorphic markers. In bulked-segregant analysis (BSA), out of 100 random amplified polymorphic DNA (RAPD) primers only two produced three polymorphic RAPD markers between the two DNA pools. In conversion of the three RAPD markers into sequence-characterized amplified region (SCAR) markers, only one was successfully converted into a SCAR marker FL-569 linking to the trait of longer frond. Test of the marker FL-569 showed that 80% of the individuals with longest fronds in a wild population and 87.5% of individuals with the longest fronds in an inbred line “Zhongke No. 2” could be detected by FL-569. Additionally, genetic linkage analysis showed that the SCAR marker could be integrated into the reported genetic map and QTL mapping showed that FL-569 linking to qL1-1. The obtained marker FL-569 will be beneficial to MAS in S. japonica breeding.  相似文献   

6.
Phomopsis stem blight (PSB) caused by Diaporthe toxica is a major disease in narrow-leafed lupin ( Lupinus angustifolius L.). The F(2) progeny and the parental plants from a cross between a breeding line 75A:258 (containing a single dominant resistance gene Phr1 against the disease) and a commercial cultivar Unicrop (susceptible to the disease) were used for development of molecular markers linked to the disease resistance gene. Two pairs of co-dominant DNA polymorphisms were detected using the microsatellite-anchored fragment length polymorphism (MFLP) technique. Both pairs of polymorphisms were isolated from the MFLP gels, re-amplified by PCR, sequenced, and converted into co-dominant, sequence-specific and PCR-based markers. Linkage analysis by MAPMAKER suggested that one marker (Ph258M2) was 5.7 centiMorgans (cM) from Phr1, and the other marker (Ph258M1) was 2.1 cM from Ph258M2 but further away from Phr1. These markers are suitable for marker-assisted selection (MAS) in lupin breeding.  相似文献   

7.
Selection for anthracnose disease resistance is one of the major objectives in lupin breeding programs. The aim of this study was to develop a molecular marker linked to a gene conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.), which can be widely used for MAS in lupin breeding. A F(8)derived RIL population from a cross between cultivar Tanjil (resistant to anthracnose) and Unicrop (susceptible) was used for marker development. DNA fingerprinting was conducted on 12 representative plants by combining the AFLP method with primers designed based on conserved sequences of plant disease resistance genes. A co-dominant candidate marker was detected from a DNA fingerprint. The candidate marker was cloned, sequenced, and converted into a sequence-specific, simple PCR based marker. Linkage analysis based on a segregating population consisting of 184 RILs suggested that the marker, designated as AntjM2, is located 2.3 cM away from the R gene conferring anthracnose resistance in L. angustifolius. The marker has now being implemented for MAS in the Australian national lupin breeding program.  相似文献   

8.
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F8 recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F8 population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of “false positives” (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.  相似文献   

9.
A novel genic male sterile (GMS) line in Brassica napus L., which was identified in 1999, was found to be controlled by a monogenic dominant gene, which we have designated as MDGMS. The microspores of the MDGMS abort before the degradation of the tapetal cell layer. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Among 880 random 10-mer oligonucleotide primers screened against the bulk DNA of sterile and fertile, one primer S243 (5′-CTATGCCGAC-3′) gave a repeatable 1500-bp DNA polymorphic segment S2431500 between the two bulks. Analysis of individual plants of each bulks and other types of GMS and cytoplasmic male sterility (CMS) lines suggest that the RAPD marker S2431500 is closely linked to the MDGMS locus in rapeseed. This RAPD marker has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs.  相似文献   

10.
Meloidogynejavanica is the most widely spread nematode pest on soybean in SouthAfrica. Only a few registered commercial South African cultivars are poor hostsof this nematode species and there is an urgent need for an efficient breedingprogramme for resistant cultivars of all maturity groups. However, breeding ishampered by laborious screening procedures for selection of poor host cultivarsand/or lines. The objective of this study was to develop an economically viablemolecular marker system for application in selection procedures. BothRestriction Fragment Length Polymorphism (RFLP) and Amplified Fragment LengthPolymorphism (AFLP) screening techniques identified markers linked togall-indexvariation in a segregating population of 60 F2 progeny from a crossbetween a resistant cultivar (Gazelle) and a highly susceptible variety(Prima).A codominant RFLP marker( B212) was linked significantly to M.javanica resistance and explained 62% of the variation ingall-index.Seven AFLP markers were linked significantly to the resistance trait, of whichfour were linked in repulsion phase and three in coupling phase. All seven AFLPmarkers mapped to LG-F (Linkage Group F) on the public soybean molecular map.The major quantitative trait locus (QTL) for resistance mapped between markersE-ACC/M-CTC2(SOJA6) (linked in coupling phase), B212 and E-AAC/M-CAT1(SOJA7)(linked in repulsion phase). These two AFLP markers bracketing the majorresistance QTL were successfully converted to SCARs (Sequence CharacterizedAmplified Regions). Marker E-ACC/M-CTC2 was converted to a codominant SCARmarker SOJA6, which accounted for 41% of variation in gall-index in the mappingpopulation. Marker E-AAC/M-CAT1 was converted to a dominant SCAR marker (SOJA7)and explained 42% of gall-index variation in the mapping population. These twomarkers mapped approximately 3.8 cM and 2.4 cMrespectively from the resistance QTL. This study represents the first report ofthe development of PCR-based sequence specific markers linked to M.javanica resistance in soybean.  相似文献   

11.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

12.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

13.
Bulked segregant analysis combined with AFLPs was used to identify molecular markers linked to the Rca2 gene conferring resistance to Colletotrichum acutatum pathogenicity group 2 which causes anthracnose in the octoploid strawberry Fragaria × ananassa. DNA bulks originating from a cross between the resistant cultivar ‘Capitola’ and the susceptible cultivar ‘Pajaro’ were screened with 110 EcoRI/MseI AFLP combinations. Four AFLP markers were found linked in coupling phase to Rca2 with recombination percentages between 0% and 17.7%. Among the four markers linked to the resistance gene, two were converted into SCAR markers (STS-Rca2_417 and STS-Rca2_240) and screened in a large segregating population including 179 genotypes. The Rca2 resistance gene was estimated to be 0.6 cM from STS-Rca2_417 and 2.8 cM from STS-Rca2_240. The presence/absence of the two SCAR markers was further studied in 43 cultivars of F. × ananassa, including 14 susceptible, 28 resistant, and one intermediate genotype. Results showed that 81.4% and 62.8% of the resistant/susceptible genotypes were correctly predicted by using STS-Rca2_417 and STS-Rca2_240, respectively. The 14 susceptible genotypes showed no amplification for either SCARs. These developed SCARs constitute new tools for indirect selection criteria of anthracnose resistance genotypes in strawberry breeding programs.  相似文献   

14.
Zinc deficiency is a critical nutritional problem in soils, restricting yield and nutritional quality of barley (Hordeum vulgare L.). Some genotypes (Zn-efficient) can produce greater yield and accumulate more Zn in seed under Zn deficiency than standard (Zn-inefficient) genotypes. However, there is little information regarding the genetics of Zn uptake/accumulation and location of genes conferring Zn efficiency in barley. Selection through molecular markers for seed Zn accumulation might be an efficient complementary breeding tool in barley. With the aim of developing molecular markers for increased accumulation of Zn in seed, a population of 150 DH lines derived from a cross between Clipper (low-Zn-accumulator) and Sahara 3771 (high-Zn-accumulator) was screened in the field and glasshouse for seed Zn concentration and content. One dominant DNA polymorphism was detected using the microsatellite-anchored fragment length polymorphism (MFLP) technique. The candidate MFLP marker was isolated from the MFLP gel, re-amplified by PCR, cloned, sequenced, and converted into simple sequence-specific and PCR-based marker. This marker, located on the short arm of chromosome 2H, might be useful for the improvement of barley nutritional quality and productivity programs in Zn-deficient environments. However, high seed Zn alone can not replace the need for Zn fertilization.  相似文献   

15.
The development of Septoria nodorum blotch-resistant cultivars has become a high priority objective for durum wheat breeding programs. Marker-assisted selection enables breeders to improve selection efficiency. In order to develop markers for resistance to Septoria nodorum blotch, a set of F5 recombinant inbred lines, derived from the crosses Sceptre/3–6, Sceptre/S9–10 and Sceptre/S12–1, was developed based on the F2-derived family method. Two RAPD markers, designated UBC521650 and RC37510, were detected by bulked segregant analysis and located approximately 15 and 13.1 centiMorgans (cM) from the resistance gene snbTM, respectively. A SCAR marker was also successfully developed for marker-assisted selection in breeding programs based on the sequence of the RAPD marker UBC521650. This is the first report of DNA-based markers linked to resistance for Septoria nodorum blotch in durum wheat. Received: 8 March 2000 / Accepted: 25 June 2000  相似文献   

16.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

17.
The aphid transmitted Turnip yellows virus (TuYV) has become a serious pathogen in many rapeseed (Brassica napus L.) growing areas. Three-years’ field trials were carried out to get detailed information on the genetics of TuYV resistance derived from the resynthesised B. napus line ‘R54’ and to develop closely linked markers. F1 plants and segregating doubled-haploid (DH) populations derived from crosses to susceptible cultivars were analysed using artificial inoculation with virus-bearing aphids, followed by DAS-ELISA. Assuming a threshold of E 405 = 0.1 in ELISA carried out in December, the results led to the conclusion that pre-winter inhibition of TuYV is inherited in a monogenic dominant manner. However, the virus titre in most resistant lines increased during the growing period, indicating that the resistance is incomplete and that the level of the virus titre is influenced by environmental factors. Bulked-segregant marker analysis for this resistance locus identified two closely linked SSR markers along with six closely linked and three co-segregating AFLP markers. Two AFLP markers were converted into co-dominant STS markers, facilitating efficient marker-based selection for TuYV resistance. Effective markers are particularly valuable with respect to breeding for TuYV resistance, because artificial inoculation procedures using virus-bearing aphids are extremely difficult to integrate into practical rapeseed breeding programs.  相似文献   

18.
19.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

20.
Molecular tagging and mapping of the erect panicle gene in rice   总被引:6,自引:0,他引:6  
Erect panicle (EP) is one of the more important traits of the proposed ideotype of high-yielding rice. Several rice cultivars with the EP phenotype, which has been reported to be controlled by a dominant gene, have been successfully developed and released for commercial production in North China. To analyze the inheritance of the EP trait, we generated segregating F2 and BC1F1 populations by crossing an EP-type variety, Liaojing 5, and a curved-panicle-type variety, Fengjin. Our results confirmed that a dominant gene controls the EP trait. Simple-sequence repeat (SSR) and bulked segregant analyses of the F2 population revealed that the EP gene is located on chromosome 9, between two newly developed SSR markers, RM5833-11 and RM5686-23, at a genetic distance of 1.5 and 0.9 cM, respectively. Markers closer to the EP gene were developed by amplified fragment length polymorphism (AFLP) analysis with 128 AFLP primer combinations. Three AFLP markers were found to be linked to the EP gene, and the nearest marker, E-TA/M-CTC200, was mapped to the same location as SSR marker RM5686-23, 1.5 cM from the EP gene. A local map around the EP gene comprising nine SSR and one AFLP marker was constructed. These markers will be useful for marker-assisted selection (MAS) for the EP trait in rice breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号