首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A key challenge in marker-assisted selection (MAS) for molecular plant breeding is to develop markers linked to genes of interest which are applicable to multiple breeding populations. In this study representative F2 plants from a cross Mandalup (resistant to anthracnose disease) × Quilinock (susceptible) of Lupinus angustifolius were used in DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphism (MFLP). Nine candidate MFLP markers linked to anthracnose resistance were identified, then ‘validated’ on 17 commercial cultivars. The number of “false positives” (showing resistant-allele band but lack of the R gene) for each of the nine candidate MFLP markers on the 17 cultivars ranged from 1 to 9. The candidate marker with least number of false positive was selected, sequenced, and was converted into a co-dominant, sequence-specific, simple PCR based marker suitable for routine implementation. Testing on 180 F2 plants confirmed that the converted marker was linked to the R gene at 5.1 centiMorgan. The banding pattern of the converted marker was consistent with the disease phenotype on 23 out of the 24 cultivars. This marker, designated “AnManM1”, is now being used for MAS in the Australian lupin breeding program. We conclude that generation of multiple candidate markers, followed by a validation step to select the best marker before conversion to an implementable form is an efficient strategy to ensure wide applicability for MAS.  相似文献   

2.
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

3.
Phomopsis stem blight (PSB) caused by Diaporthe toxica is a major disease in narrow-leafed lupin ( Lupinus angustifolius L.). The F(2) progeny and the parental plants from a cross between a breeding line 75A:258 (containing a single dominant resistance gene Phr1 against the disease) and a commercial cultivar Unicrop (susceptible to the disease) were used for development of molecular markers linked to the disease resistance gene. Two pairs of co-dominant DNA polymorphisms were detected using the microsatellite-anchored fragment length polymorphism (MFLP) technique. Both pairs of polymorphisms were isolated from the MFLP gels, re-amplified by PCR, sequenced, and converted into co-dominant, sequence-specific and PCR-based markers. Linkage analysis by MAPMAKER suggested that one marker (Ph258M2) was 5.7 centiMorgans (cM) from Phr1, and the other marker (Ph258M1) was 2.1 cM from Ph258M2 but further away from Phr1. These markers are suitable for marker-assisted selection (MAS) in lupin breeding.  相似文献   

4.
Seeds and plants of wild type Lupinus albus are bitter and contain high level of alkaloids. During domestication, at least three genes conferring low-alkaloid content were identified and incorporated into commercial varieties. Australian lupin breeders exclusively utilize one of these sweetness genes, “pauper”, in all varieties to prevent possible bitterness contamination via out-crossing. A cross was made between a sweet variety Kiev Mutant (containing pauper gene) and a bitter type landrace P27174, and the population was advanced into F8 recombinant inbred lines (RILs). Twenty-four plants representing sweetness and bitterness were subjected to DNA fingerprinting by the microsatellite-anchored fragment length polymorphism (MFLP) technique. A dominant polymorphism was discovered in an MFLP fingerprint. The MFLP marker was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the software program MapManager with marker score data and alkaloid phenotyping data from a segregating population containing 190 F8 RILs indicated that the marker is linked to the pauper gene at the genetic distance of 1.4 centiMorgans (cM). This marker, which is designated as “PauperM1”, is capable of distinguishing the pauper gene from the other two low-alkaloid genes exiguus and nutricius. Validation on germplasm from the Australian lupin breeding program showed that the banding pattern of the marker PauperM1 is consistent with the alkaloid genotyping on a wide range of domesticated varieties and breeding lines. The PauperM1 marker is now being implemented for marker assisted selection in the Australian albus lupin breeding program.  相似文献   

5.
Seed pods of wild-type narrow-leafed lupins (Lupinus angustifolius L.) shatter upon maturity, dispersing their seeds. Recessive alleles of the genes Tardus and Lentus that confer reduced pod shattering have been incorporated into domesticated cultivars to facilitate harvesting. Tardus was mapped in an F8 recombinant inbred population of a cross between domesticated and wild lupins. A microsatellite–anchored fragment length polymorphism marker (TaM1), which mapped 2.1 cM from Tardus, was converted to a locus-specific PCR assay. Marker TaM2, a restriction fragment length polymorphism marker was converted to a PCR assay and mapped to 3.9 cM on the other side of Tardus. Marker TaM3, a cleaved amplified polymorphic sequence marker, was positioned along-side marker TaM1 at 3.9 cM from Tardus. One or more markers was polymorphic in 70% of possible pairwise crosses between Australian domesticated lines and wild accessions tested, indicating wide applicability of the markers in crosses between wild and domesticated germplasm.  相似文献   

6.
In contrast to most widespread broad-acre crops, the narrow-leafed lupin (Lupinus angustifolius L.) was domesticated very recently, in breeding programmes isolated in both space and time. Whereas domestication was initiated in Central Europe in the early twentieth century, the crop was subsequently industrialized in Australia, which now dominates world production. To investigate the ramifications of these bottlenecks, the genetic diversity of wild (n = 1,248) and domesticated populations (n = 95) was characterized using diversity arrays technology, and adaptation studied using G × E trials (n = 31) comprising all Australian cultivars released from 1967 to 2004 (n = 23). Principal coordinates analysis demonstrates extremely limited genetic diversity in European and Australian breeding material compared to wild stocks. AMMI analysis indicates that G × E interaction is a minor, albeit significant effect, dominated by strong responses to local, Western Australian (WA) optima. Over time Australian cultivars have become increasingly responsive to warm, intermediate rainfall environments in the northern WA grainbelt, but much less so to cool vegetative phase eastern environments, which have considerably more yield potential. G × E interaction is well explained by phenology, and its interaction with seasonal climate, as a result of varying vernalization responses. Yield differences are minimized when vegetative phase temperatures fully satisfy the vernalization requirement (typical of eastern Australia), and maximized when they do not (typical of WA). In breeding for WA optima, the vernalization response has been eliminated and there has been strong selection for terminal drought avoidance through early phenology, which limits yield potential in longer season eastern environments. Conversely, vernalization-responsive cultivars are more yield-responsive in the east, where low temperatures moderately extend the vegetative phase. The confounding of phenology and vernalization response limits adaptation in narrow-leafed lupin, isolates breeding programmes, and should be eliminated by widening the flowering time range in a vernalization-unresponsive background. Concomitantly, breeding strategies that will widen the genetic base of the breeding pool in an ongoing manner should be initiated.  相似文献   

7.
A mapping population of F(8)derived recombinant inbred lines (RILs) was established from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin (Lupinus angustifolius L.). The parents together with the 89 RILs were subjected to DNA fingerprinting using microsatellite-anchored fragment length polymorphism (MFLP) to rapidly generate DNA markers to construct a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 7 or more markers. The total map length was 1543 cM, with an average distance of 3.4 cM between adjacent markers. This is the first published map for a lupin species. The map can be exploited for marker assisted selection for genetic improvement in lupin breeding programs.  相似文献   

8.
Selection for anthracnose disease resistance is one of the top priorities in white lupin (Lupinus albus) breeding programs. A cross was made between a landrace P27174 (resistant to anthracnose) and a cultivar Kiev Mutant (susceptible). The progeny was advanced to F8 recombinant inbred lines (RILs). Disease tests on the RIL population from field trials over 2 years indicated that the disease resistance in P27174 was polygenic controlled. A modified selective genotyping strategy was applied in the development of molecular markers linked to quantitative loci conferring anthracnose diseases resistance. Eight individual plants representing high level of anthracnose resistance (HR), eight plants representing susceptibility (S), together with eight lines representing medium level of anthracnose resistance (MR), were subjected to DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphisms (MFLP). Six MFLP polymorphisms, which had the banding pattern matching the HR plants and the S plants, were identified as candidate markers linked to quantitative loci conferring anthracnose resistance. The six candidate MFLP markers were delineated into three groups based on their banding variation on the eight MR plants. One candidate MFLP marker each from the three groups was selected, cloned, sequenced, and converted into co-dominant, sequence-specific PCR markers. These three markers, designated as WANR1, WANR2 and WANR3, were tested on a segregating population containing 189 F8 RILs. The disease phenotyping data and the marker genotyping data on the F8 RILs were merged and analysed by the JMP software using the ‘fit-model’ function, which revealed that 71% of the phenotypic variation was controlled by genetic factors, while the other 29% of the phenotypic variation was due to environmental factors and environment × genotype interactions. On individual marker basis, marker WANR1 conditioned 39% of phenotypic variations of anthracnose resistance, followed by marker WANR2 with 8%, and WANR3 with 12%. Further analysis showed that WANR2 and WANR3 were on the same linkage group with a genetic distance of 15.3 cM. The combination of the two markers WANR1 and WANR3 explained 51% out from the 71% of the genetic controlled variations for disease resistance, indicating that the two QTLs working additively for anthracnose disease resistance. A simulation of marker-assisted selection on the F8 RIL population using the two markers WANR1 and WANR3 identified 42 out of the 189 RILs being homozygous for resistance-allele bands for both markers, and 41 of them showed disease severity below 3.0 on the 1 (highly resistant) to 5 (susceptible) scale. The two markers WANR1 and WANR3 have now been implemented for marker-assisted selection for anthracnose resistance in the L. albus breeding program in Australia.  相似文献   

9.
10.
Race-specific seedling resistance genes are the primary means of controlling crown rust of oat caused by Puccinia coronata Corda f. sp. avenae Eriks in Canada. Pc91 is a seedling crown rust resistance gene that is highly effective against the current crown rust population in North America. A number of race-specific resistance genes have been mapped and markers that are closely linked to them have been identified. However, the use of these markers in oat breeding has been limited by the economics of marker-assisted selection (MAS). A crucial step in the successful application of MAS in breeding programs is the development of inexpensive and easy-to-use molecular markers. The primary objective of this study was to develop co-dominant KBioscience competitive allele-specific PCR (KASP) markers linked to Pc91 for deployment in high-throughput MAS in oat breeding programs. The allele-specific marker showed consistent diagnostic polymorphism between the selected 16 North American oat breeding lines. The developed co-dominant marker was also validated on three F2 populations (AC Morgan × Stainless; SW Betania × Stainless; AC Morgan × CDC Morrison) and one recombinant inbred line population (CDC Sol-Fi × HiFi) segregating for Pc91 using KASP genotyping technology. We recommend the simple, low-cost marker as a powerful tool for pyramiding Pc91 with other effective crown rust resistance loci into a single line. The mapping results indicate that crown rust resistance gene Pc91 resides on the translocated oat chromosome 7C-17A.  相似文献   

11.
Warty fruit is one of the highly valuable external quality traits related to the market values of cucumber. Genetic analysis has shown that a single dominant gene, Tu (Tuberculate fruit), determines the warty fruit trait in the cucumber plant. An F2 population (247 individuals) from the cross of S06 × S52 was used for the mapping of the Tu/tu locus. By combining bulked segregant analysis with the sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers, 15 markers (9 SRAPs and 6 SSRs) linked to the Tu/tu locus were identified. Of nine SRAP markers, three closely linked to the Tu/tu locus were successfully converted into sequence characterized amplified region (SCAR) markers. The Tu/tu locus was mapped between the co-dominant SSR marker SSR16203 and the SCAR marker C_SC933, at a genetic distance of 1.4 and 5.9 cM, respectively. Then the linked SSR markers in the study were used as anchor loci to locate the Tu/tu locus on cucumber chromosome 5. Moreover, the validity analysis of the C_SC69 and C_SC24 markers was performed with 62 cucumber lines of diverse origins, showing that the two SCAR markers can be used for marker-assisted selection (MAS) of the warty fruit trait in cucumber breeding. The information provided in this study will facilitate the map-based cloning of the Tu/tu gene.  相似文献   

12.
Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. Complete resistance to race 1 isolates is available in Lactuca sativa cultivar (cv.) La Brillante and understanding the genetic basis of this resistance will aid development of new resistant cultivars. F1 and F2 families from crosses between La Brillante and three iceberg cultivars as well as a recombinant inbred line population derived from L. sativa cv. Salinas 88 × La Brillante were evaluated for disease incidence and disease severity in replicated greenhouse and field experiments. One hundred and six molecular markers were used to generate a genetic map from Salinas 88 × La Brillante and for detection of quantitative trait loci. Segregation was consistent with a single dominant gene of major effect which we are naming Verticillium resistance 1 (Vr1). The gene described large portions of the phenotypic variance (R 2 = 0.49–0.68) and was mapped to linkage group 9 coincident with an expressed sequence tag marker (QGD8I16.yg.ab1) that has sequence similarity with the Ve gene that confers resistance to V. dahliae race 1 in tomato. The simple inheritance of resistance indicates that breeding procedures designed for single genes will be applicable for developing resistant cultivars. QGD8I16.yg.ab1 is a good candidate for functional analysis and development of markers suitable for marker-assisted selection.  相似文献   

13.
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.  相似文献   

14.
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F8 recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F8 population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of “false positives” (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.  相似文献   

15.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

16.
Selection for anthracnose disease resistance is one of the major objectives in lupin breeding programs. The aim of this study was to develop a molecular marker linked to a gene conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.), which can be widely used for MAS in lupin breeding. A F(8)derived RIL population from a cross between cultivar Tanjil (resistant to anthracnose) and Unicrop (susceptible) was used for marker development. DNA fingerprinting was conducted on 12 representative plants by combining the AFLP method with primers designed based on conserved sequences of plant disease resistance genes. A co-dominant candidate marker was detected from a DNA fingerprint. The candidate marker was cloned, sequenced, and converted into a sequence-specific, simple PCR based marker. Linkage analysis based on a segregating population consisting of 184 RILs suggested that the marker, designated as AntjM2, is located 2.3 cM away from the R gene conferring anthracnose resistance in L. angustifolius. The marker has now being implemented for MAS in the Australian national lupin breeding program.  相似文献   

17.
We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorised users.  相似文献   

18.
There are approximately 100 species and 10,000 cultivars of Lilium and in general their phylogeny is understood. Difficulties remain, however, in understanding the breeding relationships of cultivars and commercial hybrids. One solution to this problem is to identify a selection of validated and transferable SSR markers for use in genotyping. Although over 100 Lilium SSRs have been developed, they have not been validated for use with broad populations. Here, were-evaluated 112 SSRs with 69 lily accessions from different sources, and selected 70 SSRs as easy to score, transferable and polymorphic in all accessions tested. Based on the marker data from 70 SSRs, two main clusters were established for 69 accessions using TREECON, one includes Asiatic hybrids, Longiflorum × Asiatic hybrids and Asiatic local landraces (Lilium brownii, L. brownii var. giganteum, Lilium pumilum, Lilium davidii var. unicolor and Lilium lancifolium), the other is composed primarily of Oriental hybrids and Oriental × Trumpet hybrids, which is in agreement with previous studies and the breeding pedigree. The utility of the 70 SSR markers for establishing parentage and taxon identity of landraces was validated. Our study offers valuable information and validated markers for Lilium systematic classification and the establishment of identity.  相似文献   

19.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

20.
Southern corn rust, caused by Puccinia polysora Underw., has destructive potential on the susceptible host. In this study, the resistance inheritance was investigated in an F 2 and its F 2:3 populations derived from a cross from two inbred lines W2D (resistant) and W222 (susceptible). The 3:1 ratio of resistant to susceptible plants indicated that the resistance is controlled by one dominant gene (named as RppD). The gene RppD was located by means of the F 2 population. Total of 11 markers, including five SSR markers, five sequence-tagged site markers and one cleaved-amplified polymorphic sequence (CAPS) marker, were identified to narrow the gene RppD down to a smaller interval. The closest markers flanking RppD were SSR marker umc1291 and CAPS marker CAPS858, with genetic distances of 2.9 and 0.8 cM, respectively. Moreover, RppD might be a novel Rpp resistance gene or haplotype differing from RppQ and RppP25 according to an allelism test among the three crosses W2D × Qi319, W2D × P25 and Qi319 × P25. As a result, RppD haplotype might be helpful to maize germplasm enhancement and disease-resistant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号